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A two level sequential decision formulation for the control of
interconnected stochastic linear discrete-time systems is investigated.
An intercomnection of several systems is considered, whereby each
subsystem has a decision maker and an associated quadratic cost
function, One of the decision makers is designated as a leader or
coordinator and his control strategies are to be chosen prior to those
of the others. The information available to each decision maker may be
different from those of the others. The second level decision makers
are regarded as followers in the context of Stackelberg strategies.
Their strategies are in accerdance with the Nash equilibrium concept or
Pareto optimal concept except that the coordinator's strategy is known
to all of them. The coordinator chooses his strategy under the
assumotion that the followers will fully exploit the prior amnouncement
of his stratexy. Centralized and decenlralized information are
considered. Dynamic programming is employed to derive the recursive
aquations for determininz the control laws for each subsystem.
Decentralized information structure is more attractive since each
subsystem control law is based only on local measurements. However a
two-point boundary value problem has to be solved. A simple alsorithm
is suggested bub conditions for convermence are not yet available,
Finally, a decentralized Stackelbery stratesies for an intercoonected
power system is suggested. The design procedure amphasizes propertional

~

plus integral control in the context of Jtackelberg strategiles.
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1. INTRODUCTION

1.1 Inkroduction

A multi-level structure for a large scale sys&em appears rather
naturally in practice. It is the consequence of an effort toward
efficient wutilization of the available resources or the inherent
limitations of the elements out of which the system is built. An
interconnected power system provides an lmportant example of a class of

large-scale systems.

A significant develooment 1in large-scale system theory is the
concept of multi-perseon stochastic games with nonclassical information
patterns and their implications on decentralized and hierarchical
control strategies [1,4,12-15,42,43,48,60,62). It is evident that a
theory of coordination using the bargaining approach [15] is an

important and interesting avenue {or new research.

The main object of this thesis is to investizate Stackelberg
coordination for decentralized stochastic control. A strong motivation
for this study 1Is its potential application to decentralize control
problems such as thaose found in an interconnected power system which can
be described as a collection of subsystems, each of which is called a

control area. FEBach area is responsible for meeting its obligation to

maintain the appropriate system frequency and supply its own load’

demand. Also, each area provides mutual assistance to its neighbours in
accordance with the basic operating policy of interconnected power

systems [23)]. When the interconnected network is small centralized
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techniques can be used quite effectively (19,20,23,25,33,39,57].
However, in the more gcncral case the communications/computational costs
involved in implementing a centralized controller often become

prohibitive and decentralized of some sort becomes essential.

We will investigate both the theoretical framework and a potential
practical applicatien of Stackelberg coordination for decentralized
stochastic control of general organizational forms of large scale
system. These systems may be controlled by multiple decision makers
having different models, different information sets and different
objective functionals. Our approach will be hased on differential games
(16-18,47-53], stochastic controi [2-3,5,30,37,38,42,54,63,64] and

electric power system control 19,20,23,25,33,39,57]

1.2 Literature Survev

The design of large, complex systems invariably involves
decomposition of the system into a number of smaller subdsystems each
with its own objective functions and constraints [40]). The resulting
interconnection of subsystems may take on many forms, but one of the
most common is the hierarchical form in which a given level subsystem
controls or coordinates the subsystems on the level belew it and in turn
is controlled by the subsystems on the level above it. The information
available to a subsystem on a given level and the way such a subsystem

can make use of the information to influence or control another

subsystem has been the object of much study.
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Decentralized information among decision makers was first studied
in the static team theory of Radner [M4]. For the dynamic cases, H.S.
Yitsenhausen [61-63] was the first who showed that the linear auadratic
Gaussian oroblem i3 nontrivial when the {information pattern Iis
nonclassical. Chong ard Athans [16] imposed constraints on the control
structure of the LQG system having different information sets. They
showed that the parameter matrices of each dynamic contrbller could then
be globally optimized by solving a deterministic matrix optimal contrel
problem. Ho and Chu [13,27] have demcnstrated that certain nonclassical
stochastic control problems admit a linear solution. Sandell and Athans
{45]) have shown that LQG problems with a unit time delay of information
exchange admit a linear optimal decisioen rule, which can be calculated
explicitly. The results appeared to be promising as far as their
applicability to decentralized control thecry I1s concerned. With
decentralized intormation, there is a trade-off between information
efficiency and computalion efficiency. Chong and Athass {[14] assumed
that the "coordinator!" was allowed to "interfere" only once in a while.
When the coordinator is acting open-loop the lower level problems can be

decomposed completely.

Although different infomation sets are available to each
controller, there is cooperation among the different controllers because
they all try to minimize the same cost functional in the framework of
team theory. This type of 2 situation can be descridbed as the
Yaooperative and partially decentralized case" in large scale systen

theory.
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It appears that a theory of coordination using the bargalning
approach sould also ba developed using the same ramawork. It certainly
represents an important and interesting avenue for new tesearch. This
has not been attompted until very recently. Cruz [15] proposed the
extenslon of Stackelberg strategles to the coordination of several

subsystems.

One could naturall; oxpect that game theory s of conslderable use
in bargaining. TIn fact, game theory has already been used to study
bargaining bype situation betucen organizablona Ln an economy or 2
soclaty [58,99]}. The Ldea of using control theory to solve games with
dynamic evoluation was initiated by Isaaes (29]. The games Isaacs
studied were primarily deterministic zero-sum sames. Later a wore
general congept of differential games known as the theory of N-player
differontial games has been introduced. Starr and Ho [87,88) considered
non-zero sum differential gnmes with solution concepts or ratlonales
auch ag Naash, Parcto and winimox in o dyneaie sense.  The concepta of
clogsad-loop and open-loop solutions were adapted from modern control
theory to dyuamic game theoory, and relates to the elass of admissible
atrateglen, fn  particular, Intereonst  has  been focused on the
dotermination of Nash wequilivrium  steategies  for  deterministic
lincar-quadratic nonzero-asum Jdifferontial gamea with dynamic inCovrmation
atructures (U5-lo).  Most of the equilibrium soluLions tound in the
literatures for auch games have been linear in the information available
to each player. Only Recently, T, Bazar (8] har shown, via a

counterexample, that when at least one of the playeras haz aceess Lo
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closed-loop information, such games admit non-unique and nonlinear
equilibrium solutions. Recently, Cruz et al. [16,49-53] hnave
introduced the Stackelberg strategy developed in static games [58] to
dynamic games. The feedback Stackelberg solution concept ([17] has been

extended to a class of stochastic games by Castanon and Athans [18].

The theory of stochastic dynamic games is based on the works of
Witsenhausen [61-64], but earlier, Rhodes and Luenberger [42,43], and
Behn and Ho (4) considered the problem of zero-sum dynamic games with
imperfect information. The restriction of the transfer of information
through decision was discussed by Aoki [1] while considering equilibria

in Nash games.

Interconnected electric energy systems provide an important example
of a class of large-scale systems. In several papers
(19,20,23,25,33,39,57], attempts have been made to analyze the load
frequency controller of an interconnected power system via wmodern
optimal control theory. Since the solution pronosed by Elgerd [25] is
based on the standard linear regulator theory for disturbance free
dynamic systems, it neither eliminates the steady-state errors of
frequency and tie-line flows, caused by system load disturbance, nor
provides the desired generation distribution. However, a resonable
dynamic model was given. A new design procedure for load and freguency
control was developed later by Calovie [19,20] which avoids all the
short comings of oprevious solutions. The procedure used is to adjoin

the integral of each area control error (ACE) to the system state
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variables. These new state variables as well as the origirnal system
state variables are included in the cost functional. As a result, zall
areas capable of doing so will drive their area control errors to zero
in steady-state provided the system is stable. Recently, Kwatny [33]
suggested that when energy source response limitations are recognized,
the load frequency control (LFC) problem should be viewed as a
"tracking”" problem rather than a "regulator" problem. The estimatlion
and prediction of load are usedvto coordinate generation in each area so

as to regulate power flows and frequencies.

1.3 Problem Area and Methodologv

The coordination of a large scale system, which has the following
characteristics {15]: 1. two or more decision makers having different
models, 2. different information sets available to the decision makers,
and 3. different objective functionals, using differential games
approach represents an important and interesting area for research. We
will investigate, in details, Stackelberg Strategies for multilevel
systems. The leader who acts as a coordinator and other decision makers
who are viewed as followers assume different models of the same system.
Several classes of information structures available to the decision

makers will be discussed.

First, we consider an interconnection of M discrete-time linear
stochastic subsystems and associate  with each  subsystem &

decision-maker, a quadratic performance criterion, and a linear noisy




measurement . Superimposed on the interconnection i3 an addition
decision maker called the c¢oordinator acting through an additional
discrete-time linear stochastic subsystem, with a separate qguadratic
performance criterion and a separate linear noisy measurement. The
coordinator is viewed as a leader and the other declsion-makers as
followers assuming Nash rationale or Pareto rationale among themselves.
The Stackelberg equilibrium strategy [(17] is extended to fit this

situation when there is one leader and many followers.

When all decision makers have perfect system measurement, or when
all the information of all the followvers are identical and the
coordinator's information contains the followers' information, feedback
control structure will be sought based on the stochastic Stackelberg
equilibrium strategy [18]. The following special cases will also be
examined: 1. when the c¢oordinator has perfect measurement and all the
followers have indentical noisy measurement, and 2, when the
coordinator has nolav measur2ment and all the (ollowers have no

measurement.

The classes of information structure are not too realistic but they
provide some insight into the more complex and realistic cases treated
subsequently. Satisfactory control of a high order system may often be
achieved wusing relatively few wmeasurements and a  controller of
relatively low order. This has been the motivation for a number of
design procedures using output feedback or Jdynamic controliers of a

specified order [31,32,38,54,63,6u]. Althouxh, the assumption ot
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linearity in the class of instantaneous feedback control laws might lead
to results far from optimal which was pointed out by Witsenhausen [61]
and Basar [8], the practical need for simplifying approximations becomes
more acute i1n decentralized control when there are many separate
controllers. Decentralized Stackelberg strategies which are constrained
to be lipnear dynamic controllers of specified orders, will be
determined. ‘This control policy has the obvious advantage of being
structurally simpler to implemént since it does not require memory of
past meausurements. However, there exist, at present, no stability

results for this algorithm.

Finally, decentralized Stackelberg stratezies will be used to
develop a decentralized controller for a three-area electric power
system. This design procedure meets all the performance requirements of
load and frequency control, 1i.e. control law independent of
disturbance, zero steady-state offsets of frequency and tie-lie exchange
variations and optmal transient performance, The dynamic model,
developed by Elgerd and Fosha [25] and Calovie [19] will be used. To
overcome the problem of zero steady state offsets of frequency and
tie~lie exchange variatioans, the integral of each area control error
(ACY) is adjoined to the system equations. These new state variables
are included in the cost functional. So as Stackelberg decentralized
are concerned, each control area is constrained to feedback only its own
measurenent and they have their own choice of cost functional. The area
which has superiority in computing his strategy/collecting information,

will be declared as a coordinator who coordinates the other areas which




are viewed as followers. When the lower-level subsystems deslre to
cooperate among themselves a Pareto ootimal solution will be chosen,
otherwise Nash equilibrium solution will be chosen. The algorithm for
obtaining decentralized controllers 1s developed and applied to
load-frequency vontrol of  interconnected power  systems, The
computational algorithm suggested can not  guarantee satisfactory
results, Howevar, in practice the algorithm has exhibited rapid

qonvargence.

1.4 Qreanization of the Nork

In Chapter 2, three important stratesies 1in Gawmes theory, 1.e,
Nash  equitibrium, Pareto optimal and Stackelberg equilibrium are
discussed. The nacessary conditions for the three stratesies applied to

a linear quadratic Gaussian discrete game are reviewed.

Chapters 3 and U deal with Stackelberg coordination. Centralized
and decentralized iaformation strueture are studied in this ocontext.
Decentralized structure ls more attractive since the control sequences
are function of the measurable output anly. The seneral approach is to
destianate one subavstem to be a coordinator or leader whe covordinates
the rest of the subsystems who are viewved as followers. aAmong the
followers a Pareto optimal or Nash equilidbrium solution is selected
according to thelr Jdecisicns to cooperata or not.  These concepts alons

with the solultions are derived.
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In Chapter 5, the algorithm to solve the decentralized stochastic
Stackelberg coordination suggested in Section 3.4 1s investigated
further. A three-area interconnected power system, which is a class of
large scale system, is selected as our example. The design procedure
emphasizes proportional-plus-integral feedback control. A simulation

study is presented.




2. LINEAR QUADRATIC DIFFERENTTAL GAMES

2.1 Intraduetion

In this chapter, some important agpecta of nonzero-sum games that
are pertinent to this work are reviewed. We will conaider a special
class of differential games, where the system is linear and the cost
functions are quadratic functions of the state vectors and controls,
which is probably the only non-trivial class of differential games in
which solutlons btased on any rationale can be obtained analytically

without difficulty.

In difterential games, one must choose a soluticon concept such as,
Nash equilibrium, noninteriority, Stackelberg equilibrium ete.,. One
must also specify what intormation is available to each plaver during
the course of the game. Extensive work has been done on deterministie
nonzero-sum  difi'erential gawmes with particular emphasis ziven on
two-porson games  of  linear quadratic  fora  {3%5,30,47-51]. Hesults
available in the literatures indicate that the solutions of interest,
Nash equilibrium, Paretao equilibrium and Stackelberg eauilibrium, tor
this class of zames, and for different a priori rixed stratesy spaces,
is an arfine pollicy for each nlaver, provided that certain existepce
conditions are satiafied. T, Basar [8) has siven a counterexample to
ghow that a two-person nopzerco-sum game problem admits a nonlinear Nash
solution. He has also shown that it is possible o obtain a robust

solution which iz wlobally unigue dv including an additive zero amean
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white noise in the state dynamics. To present the idea without loss of
conceptual generality a two-person stochastic nonzero-sum game with
perfect measurement is considered, Three types of strategies are
reviewed, the MNash equilibrium strategy, the Stackelberg equilibrium

strategy and the Pareto optimal strategy.

2.2 Problem Formulation

A general formulation of the two-person discrete-time linear

quadratic stochastic differential game is given as follows:

x(k+1) = Ax(k) + Bu(k) + Cv(k) + w(k) (2.1)
vik) = Blx(k) + @l (k) (2.2)
v2(k) = HPx(k) + @3(k) (2.3)

where x(k) is the n-dimensional state vector, u(k) is the m-dimensional
control vector of player 1, v(k) is the l-dimensional control vector of
playevr 2, yi(k) is the pi-dimensional measured output vector for the
i-th player. The vector w(k), wi(k) and x(0) are independent Gaussian
random vectors for all k, where x(0) = N(0,X(0)); w(k) = N(O,D(k));
wi(k) z N(OJli(k)). Each player i chooses a control vector from a set

of admissible control U' to minimize the expected value of cost function

Ji, where
. . N-T .
Fu,v,k) = PR + S T e o x(k)
k=0

T GORYOu) +vTost () vik)]  1=1,2 (2.1)
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Because there are more than one cost functional in differential
games, optimality is defined in terms o} the rationality assumed by the
players in computing their controls. The most commonly known rationale
are the Nash, Pareto and Stackelberg solutions which are reviewed in the

following section. These are discussed in detail in [35,36,47,53].

At each stage of the game, each player will have access to some
information Ii about the present and/or past value of the state vector,
its own cost function as well as those of the other players, and control
strategies of the other plavers. Each player i has a control strategy

which is a mapping from the information set I' to the control space ut.

2.3 Nash Bouilibrium Strategy

The Nash equilibrium strategy which 1is secure against unilateral
deviations by any one player, depends on what information is available
to the players during the course of play: for example, the
‘closed-loop' and ‘open-loop' assumptions lsad to ent.irely dirfferent
costs and controls, It is iamportant to indicate that 2all the cost
function mappings are included in each information Ii. Furtheraore, all
players' decisions are announced simultaneocusly. The Nash equilibrium
strategy is reasonable when cooperation or coalition c¢an not be

guaranteed and the infermation structure is as stated above.

In this section, we review the necessary conditiocns for obtaining
Nash equilibrium strategies for discrete-time dynamic games {(2.1) with

perfect information, i.e. y*(k) = x(k), via dynamic programming.




}

14

O D 5 S G S

At stage k:

w () = arg min ELT QT x(K) + wTOR () ulk)
u(k)
+ v TasTaovi) « keI (2.5)
vi(k) = arg min E{xT(K)Q200)x(k) + u TR (k)u* (k)

v(k)
; s vTUOS200vK) + 92 (ke )/T2(K)) (2.6)
When u*(k) and v'(k) satisfy (2.5) and (2.6) simultaneously, a pair
i (u*(k), V*(k)) constitutes a Nash equilibrium solution. The Nash

optimal strategies for (2.1) are:

W (k) = -d Kx(k) (2.7)
E Vi) = -a@(K)x(k) (2.8)
where
A = (Rl+xte)'gta
‘ A2 = [s2+x3c)1 T3
| k' = BTe! (ke 1) [1-C(52+cTP2 (ke 1)C) "1 cTPR (k1)) (2.9)
k2 = cTP2(k+1)[1-B(R1+BTR (ke 1)B) " 18TP T (ks 1) ) (2.10)

The optimal rost-to-zo are

I = TR ) xk) + 7' () (2.11)
32 (%) = «TCOPP () k() + w2 (k) (2.12)
where
el = o + ATrlalen?Ts'a?
i + (A-Ba-co®)Tp (k1) (a-BA -ca?) (2.12)
| Pl = Q'(w)
} 7 () = wl(ket) + belbCR (k)5 ! (W)=0 (2.14)

P2(k) = Q2 + ATR2AN4a2T5242

t + (4-Ba-ca2)Te2(k+1) (a-pa'-ca2) (2.15)
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p2(N) = Q2(N)

720 = 7o(ke1) + trlib(k)P2(k+1)}; w2(N)=0 (2.16)

These equation can be solve backwards in time using the given final
conditions., Sufficient conditions for the existence of the solution

given by T. Basar [10], is that [R1+K1B] and {SZ+K20] are non singular.

2.4 Pareto Ontimal Stratesy

If it is possible for all ;layers in a differential game to agree,
prior to the starting time, to coordinate their strategies, then the
resulting seft of control should be chosen from the Pareto set of
solutions. No other feasible choice of controls could decrease the
costs incurred by one or more playvers without increasing the costs
incurred by the others. The selection of a particular solution in the
Pareto set is generally made subjectively based upon negotiation among
the players. Finding the Pareto set for a differential game is
equivalent to solving an optimal control preblem with a vector cost
function. When appropriate convexity conditions are satisfied [47,48]
the problem is equivalent to solving an ¥-1 parameter family of optimal

control problems with scalar cost criteria

. N-1 .
a (xT (0 () x(1)+3 xT (k)0 (k) x (k)
i=1 * K=0

At (ORY O w0+ T st (k) vik) ] (2.17)
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The compenents of « are interpreted as the relative weights placed
on the interests of the players entering the agreement. For any given
weighting vector « , the Pareto optimal solution is found by solving a
linear quadratic optimal control problem. The controls corresponding to

this solution are:

U (o) = —[R+DTR (k+1)D)~TDTP (ke 1) Ax (k) (2.18)
where
D ={B Cl; U= [ u
| v
2 2 ]
Q = E:uiol; R = E:niﬂl
i=1 i=1
2
EG;SJ‘
. i=1 ) L
P(k) = Q + XTRK + (A-DK)TP (k1) (A=DK) (2.19)
P(N) = Q(N)

A surficient condition for the solution to be exist is that the matrix
to be inverted is positive definite. These equations can be solved

backwards in time using given final conditions.

The cost-to~go incurred when the players use arbitrary linear

feedback control of the form

ui(k) = Kix(k) i=1,2 (2.20)
J k) = xR x(x) + #iik) (2.21)




where
pi(r) = ol + giTpigd
+ (a+BK1+Ck?) Tpd (k1) (A+BK 140Kk 2) (2.22)
pi(w) = o(w)
rh(k) = 2l(ke1) « tePi(ken)o(k); =leN)=0 (2.23)
2.5 Stackelbere Equilibrium Strategy

In this section we consider two-person games, where one player is
called the leader and the other 1is called the follower. In the
Stackelberg solution concepts there is a difference in informaticn
between two players. The leader, who acts first, Kknows the cost
function mapping of the follower but the follower may or may nhot XKnow
the cost function mapping of the leader. However, the f{ollower, vwhe
acts second, knows the value of the {irst plaver's decisions and take
this into account in computing his strategy. Within the dvnamic same
context, three types of solution concepts are important in 3tackelberg
games: open-loop, <closed-loop and equilibrium solutions, In this
thesis we consider only the Stackelbergy equilibrium strategv which
satisfies the principle of optimality. For a discrete time system (2.1)
with perfect information, u(k) represents the decisicn of the leader,
v(k) the decision of the follower. Using dvynamic programming at stage
ky

volu,k) = arg min E{xT(1)1Q% (k) x(Xk) + ul (K)RT\)uik)
v(k)

+ v TS v+ (ke 1) /T2 (K0} (2.24)
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u*(k) = arg uin E(xT(k)Ql(k)x(k) w ut 0RO (k)
ufk)

+ v (s G0 v, (0w e /T 0) (2.25)

Volu,k) 13 the follower's optlmal reactlon to a decision u(k) by the
leader, The optimal strategies are:
(k) = -G Y (1) x (k) (2.26)
volu k) = =alk) [Ax(k)+Bu(k) ] (2.27)
where

W) = R' + Blals'aB « BY(1-ca) ! (ks 1) (I-ca)B

Y(e) = Bfalsan + BT (1-co) Tk (kv 1) (1-CA)A
o0¢) = (5240 %2 (ke 101~ e k2 (k1)
L) = b« alafsha « aT(r-ca) V& (e 1) (I-Ca)A

The optimal cost Lo go are

J70 = xTOok GO ) + 7 () (2.28)
32000 = xTOR2 0 2 () + 22(k) (2.29)
Whare

k) = L) YTaow oo 2.30)
') = ')
w0 = ket) a beldOOR (ke 1)) (2.31)
) = 0
K200) = 0% + (A=W T TR (e 1) (1-0) (A-B™ 1)

» Yl tpey-ty (2.32)
K2 = af()
7200 = At (ke l) v trld(0K (k1) ) (2.33)
ae(N) = 0
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3 STACKELBERG COORDINATION

WITH NASH RATIONALE AMONG LOWER-LEVEL SUBSYSTEMS

3.1 Introduction

In this chapter we investigate a sequential decision approach to
the contrel of an interconnection of several subsystems. Associated
with each subsystem is a decision maker or a performance criterion
function or cost function. A framework for studying strategies for the

o

control of such systems 1is non-zero M-person diftferential <ames
(35,36,47,88]. Various solution concepts for defining optimality have
been proposed and examined. One of the wmost widely studied solution
concepts 1is the Cournot or WMash strategy [47,48] whereby the
decision-makers simultaneously minimize their respective cost functions
with respect to their individual controls. At equilibrium when all the

decision-makers apply their Nash strategies, the cost function of any

subsystem is at minimum with resocect to the control for that subsystem.

A sequential decision solution concept was first studied by
Stackelberg [58] in the context of a static economic problem with two
decision-makers. In (16,51,52] the Stackelberg concept was develooed
for two-person dynamic games with perfect information. Three types of
Stackelberg strategies were investigated in ([16,51,82]: open-1loop,
closed-lorp, and feedback. 1In general, the open-loop and 2losed-loop
Stackelberg strategies do not satisfy the ovrinciple of optimalitv but

the feedback strategy and the more <eneral ecuilibrium atratecy [17] are




21

defined to satisfy the principle of optimality. Open-loop Stackelberg
strategies were considered in [53] for two groups of players where the
player in each group use Nash strategies with respect to each other but
each group plays according to the open-loop Strackelberg concept with
respect to other groups. All these strategies are for deterministic
dynamic games. In [18] the feedback Stackelberg solutlon concept is

extended to stochastic two-persgson dynamic rames.

The approach to be explicitly developed in this chapter is based on
the coordination solution concept sugrested in [15] tor deterministic
systems, We allow stochastic Jdisturbances in the dynamic process model
and in the measurement model, as in [13], but several second-lavel
decision makers or followers are presented as in [(15]). Several types of
information structure are considered. Explicit recursion formulas for

Ry

the desizn of the feedback Stackelbers controllers for the coordinator

and the followers are

i

rnrasantad Tha atrnabka
prazanuvac, s JUNMALe

ht

1n information available at each stage and they satisty the principle of
optimality. The strategiles of the second level decision-makers are
equilibrium Mash strategies with respect to each other and in addition,
they take into account the known atprategy of the coordinator. The
coordinator chooses his strotegy with the full antlcipation that the
other decision makers will take the coordinator strategy into account in

mimizing their individual cost functions,




3.2 Problem Formulation

Consider M discrete-time linear subsystems, each modeled by
XLk + 1) = A0 CK) + a0 ()
M . .
+ 2000+ ettt + et (3.1)
i)

The measurenent of each subsystem is given by

2i (k) = 8O0 xO(k) + uil(k)xt (k)

Moo . .
# 3 #M) xI (k)+ 2 (k) i=1,...,M; (3.2)
J=1
it
where xi is the ni—dimensional state vector of the i-th subsvstem, ui is

the mi-dimensional local control vector of the decision maker DM for
the i-th subsysten, :i is the 1i—dimensiona1 measured output vector for
the i-th subsystem. The vector xi(O); Hi(kXERni; gi(kXERli; i=1,...,M;
are mutually independent Gaussian random vactors for all k with known

means and covariences.

E{x}(0)} = 0 : covixi(0)} = l(o)
el (k) =0 ; coviptt)l = Ok (k)
elelt)) =0 ; Cov{gt(k)} = =H(x)

Each subsystem seeks to minimize the expected value of its cost function
Jhuh = 3 ATnettanxta)

Nel o
+ 2 0T 0o o o+t ao R (o ut (1))

k=0
is=t, ..

oM (3.3)
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In addition to the M-subsystems, we assume that we have a

coordinator subsystem modeled by

Mo
xO(ke1) = %02 (k) + 3 A% () xt (k) + 9O(k) (3.4)
i=t

and the measurement of the coordinator subsystem is given by

M .
22(k) = HO(K)xO(k) + Y HOM(k)xb(k) + £%(k) (3.5)
i=1
where x° is the n°-dimensional state vector of the coordinator

subsystem, u® is an m%-dimensional control vector chosen by the

® is the 1%-dimensional measured output vector of the

coordinator DM°, z
coordinateor subsystem. (x°(0); #%°(k)ER™; £9%(k)€R%; k=0,...,N=1)

are mutually independent with the random vector of each subsystem,

E{x°(0)} = 0 ; cov{x®(0)} =3°(0)
E(6%(k)} = 0 ; cov{g®(k)} = 0°(k)
E{&O(K)} = 0 ; Covi{e®(k)} = =9%k)

The coordinator chooses u® to minimize the expected value of the cost

function

Mo .

I = 3TN« + 5 xiTanocian i an
2 §f71

T

k=0

+

[x°T (1)0°0) ¥ (1) +u®T (1K) RO (k) u (ko)

N . .
+ 5 3T )00 () (1)) (3.5)

i=1

where Q°, Q°1, RC are all positive definite.
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The Stackelberg approach [15] to the coordination of the subsystems is
to consider DM as a leader and DMi as followers, We imagine that DM@
provides DMi exact knowledge of all decisions made by the coordinator
and each DMi minimizes J'l with respect to u1 for each given decision of
pM° assuming that the other subsystems will do the same. With this
assumption, the subsystems play Yash among themselves. The coordinator
then minimizes J° with respect to u°, considering that the decision from

i which minimize Ji for

the subsystems result from cholces of u
i=1,...,M. Additionally, the information sets include exact knowledge
of the system dynamic DMO, DMi, the measurements and the cost

functionals. The statistics of the random elements for all k are also

included.

The optimal feedback Stackelbere approach to the 2-level
coordination of the subsystems [15] is described by the following
procedure: At each stage. the coordinator computes the subsystems'
expected reaction to his decision, based on minimizing the subsystems'
expected cost-to-go assuming that all second level decision makers will
use their optimal feedbaclk Stackelberg strategies in the rfuture. The
coordinator then seeks to minimize his expected cost-to-go assuming that
the subsystems will respond as expected. Each subaystem then uses the
coordinator’s decision to compute his optinal decision, assuming that
other subsystems will do the same. These »expectations arse conditioned

on the information sets available to 21ch subsvsbenm,
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The information set consists of exact knowledge of the system
dynamics, the measurement rules and the cost functionals of all decision
makers. Additionally, it includes exact knowledge of all decislons made
by each player up to stage k-1 and the statistics of random elements
oi(k), fi(k), i=0,...,M for all k. Also the Stackelberg nature of the
game implies that the followers' information contains the exact value of

the leader's decision at time k, u®(k).

Let arg min f(k) denote the value of u at which (k) achieves its
absolute minimum. Then the equations that define these optinal

solutions are as follows:

up(u®,k) = arg min E(Mul, k)72 0)) (3.7)
u

W) = arg min E(J°u®,x2,x,%)/2°(%)} (3.8)
-

Wi = ui(u°*,k) (3.9)

The optimal cost-to-g0 at each stage are

. C . o
SRR T W YO E Y CTE SRS VS WSS Y CVA URTR SOt ST L

pos M (3.10)

3% () = B(I%O,x0, xt k) /200k) uC=u®t utsul’)

i=1,...,M (2.11)

Stochastic dynamic programming can be used to obtain the solutions.

Two possible cases will be considered in this chapter. First, when
the information is centralized, several classes of information
structures are discussed. One is when all decision makers have perfect
aystem state measurement. Another is when the information of all the

followers are identical and the coordinater's information containa the
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followers' information. Second, we will constrain each controller to be
in decentralized structure and the i-th subsystem including the

coordinator knows only its own measurement.

3.3 Coordination with Centralized Information

In general, the coordinator has some information from each
subsystem and, in turn makes some decisions that will influence the
dynamic response of the lower-level subsystems. By definition of
Stackelberg strategies [52], all decisions made by the coordinator are
known to the second level decision makers. However, some information
may or may not be available to the coordinator and lower-level
subsystems. When the information sets are céntralized, either the
coordinator and the lower-level subsystems have perfect information of
state, or the lower-level subsystems have the same measurement but the
information set of the coordinator consists of his own measurement and
the lower level subsystems' measurement. Several partionlar ¢ases of

this problem are examined. Let us examine a system with one coordinator

and two second lsvel decision makers.

Consider the augmented system

x(k+1) = A(k)x(k) + BO(k)u®(k)

+ Bleou o) + R0 k) + vik) (3.12)

where xT) = [T Ty BT )

vI(k)

0T 91T 92Te))

x(0) and v(k) are Gaussian random vectors with zero nean and covariance
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¥(0) and A(k), and the measurement of each subsystem is
2l = #rOx) + g 120,12 (3.13)
The quadratic cost is
Ah) = HTanetnxw)
N-1

+ I3 Tkt + wi TR out ()]
k=0

13

i=0,1,2 (3.14)

3.3.1 Perfect Information

Suppose all subsystems have perfect information of the states,
i.e., zi(k)=x(k), i=0,1,2. Assume that the expected cost-to-go
at stage k is

v = IToastaoxw) + P, 1=0,1,2 (3.15)
for some deterministic matrix Si(k) and scalar function Y(k).

Using dynamic¢ programming as shown in Appendix 1, the optimum strategies

are

u® (k) = -Lo(k)x(k) (3.15)

ul) = -a O(AC) X)) + B2WCC)], =12 (3.17)
where

LOU) = [RO(k) + BT ()SC(k+ 1)B() 1™ ET (%) 820+ N R(K)

A = (1 - treosduondsitor T wleo-Liaosdgodi)

i=1,2, §=1,2, i#j

B = a0 - 37008 Ak - 320082 ak)

B(k) = BOk) - B ()4 (1)8O(%) - B2(k)a2(k)BO(k)

i) = (rE0 + 8T o st e B 00 17 8 T o) s (ke )
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QY + AT UOSTUeR DA )

- TR w BGOSR DR GO 1L () (3.18)

QY (3.19)
WD« st (ke D UK ‘ (3,200
\ (3.20)
aluo

a (A0 -RYOL GO Y I Tior oAb o Lagd) =R O L0
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\! =1,0 {3,2%)

These cquat tons can de aolved Mackwards tn time, In sumwvary, we

LN IR

have  the following  caloulacioan:

- Y Ve
121,20, are goiv

. . ) 1 .
Srartinr At gaN=i) o 3TNY, sH N

el

1. cCompute Li(L\, 1=1,0

- Compute‘kiux). i=1,2

) ~ A\ N
3. Compute Ak, Bk

oo doupute L

«odompute SV kY, S*AkY, =12

v

0. Kes-Rk=! and 2o to ', Stop when k=0,

Nota that the

contrel lws Por the coordinator and the i-th  subsyalm

involve porfect measurement of the atate,




i

s By Aoty

it

29

Illustrative Examole

Consider a linear system described by the difference equation:

x1(k+1) 0.75:(1(‘() + 0.9X2(k) + 0.9:(3(‘{) + u](k) + W1(k)
x2(k+1) = 0.3x(k) + 0.3x2(k) + 0.2x3(k) + u2(k) + wz(k)

x3(k+1)

0.3xy(k) + 0.2x5(k) + 0.8x5(k) + uz(k) + wy(k)
where u,; are the controls of players i; 1i=1,2,3 respectively. {w;(k);
i=1,2,3} are mutually independent Gaussian random vectors with zero
means and known covariances. Let the cost functions be of the form:
1 2 2 2 . -

Ji = 3(xg(N-p;)° + §£;a[(xi(k)-yi) + U3 (k) i=1,2,3
where Py’ i=1,2,3 and Yy’ i=1,2,3 are constants. This problem is
similar to a tracking problem where the players are trying to force the

states to be as close as possible to some prespecified values while

investing a minimal amount of energy.

Assume that player | is the coordinator or leader and players 2 and
3 are followers. Every players will seek control policies which are
functions of states. Stackelberg coordination for an interconnected
system with player 1 as the coordinator and players 2 and 3 as
followers, who assume Nash rationale between themselves is sought. The
parameters in the cost functional have the following values: p; = 05

i=1,2,3 and y; = 0; 1=1,2,3 and ¥ = 10. Fig 3.1 shows the trajestorv

and control policies of the system.
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3.3.2 Coordination with Mested Information Structure
1. Incomplete Information for Coordinator and Subsystem

Consider the case where the ilnformation of the state is lncomplete.
At each stage, in addition to their own estimates, the optimal
strategies would include terms involving an estimate of the other
subsystems' eostimates of the state in the future. This leads to
estimateors c¢f much larger dimsnsion than the systez itself. For 2
special case of the stochastic problem, consider the case wneres each
subsystem has the szme measurament

21 k) = 22(%) = zlk) = H(K)x(x) + g (k)

and the coordinator knows both his measurement and all subsystenm
measurements. 3o for aay %, z°%(k) D z(k), implying that the information
sety *re nested. We also have to assume that there is no information
traasfer among subsystems cthrough their controls [18). he optimum

strategies for this case are derived in dopendix 2 as

W) = -ah) (A)R(K) + 20(0)uC(k)) iz1,2 (3.25)
WO (k) =~ Y (K)RO(%) - aC()M(k) (R(k)-RO (k)] 3.27)
\ P 1T st sBeo (k) '
7)) = 5 T . + 3¥°(k)
200)-7°0) ] 1sBT)  sCa ! lR(e)-rO(%)
(3.23)
Mo = Bloostiore « o =12 (3.29)
where  R(k) = 2{x(x)/z (%)}, RO(%) = 2{x(x)/z°(x)}
a}(k), T(x), B(x), and Li(k) are defined in the gerfect information case
with b reolacing 3%(%). 1In addition we have
sAx) = Q) + AT (T-a(k)) TN 1) (T-C (%)) 4 (%)
- 1T )20k ) v (% (3.20)
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38Gk) = AT (1= TsBike ) (Z-6 (k) %)

+ AT (16 G TesB er 1) =31 (k113000 DA k)

- AT (-G O TSB ke DK w D H(r 1) A Lk)

- T ()P Cen (k) (3.31)
sCk) = - MTCOA% M) + aATGOGT (k) SR ke 1)G (KD A TK)

+ ATUOLT = KOer DEG DTS e DT = Ker NH G 1) Ja (k)

# AT 00 (5B (er DR (ke D 1 (e 1) =88 (e 16 (kD 4 (k)

= ATET (o) (3B (e 1) =3B (er 1K Cew D (K1) )4 (k) (3.32)
Yk) = BOOS (e DLI-GCR) JA(K)
M(K) = BGOSR+ TR0 (5T (e 1) =8M (ke 1) A ()

- BTGB e DR DB R A LK)
Glk) = Bl A (k) + 820Kk (k)
&%) = (RO(k) + Bl)S (ke 1)B (k)]
kE (k1) = G170 e D CE e D 22 et 210 BT e i) ez (ke 1) 1!
elikatzk) = AP A0 e 1) = A k)

?
PH(kel i)

[(r - Ki(k+l)Hi(kﬂ)]f’i(kﬂ,’k)

pl(as0) 1 (0)

n

for i=0,1,2 and where HL=H Jov L=l

2.
W) 2 vOket) + tr0%U)P i) + erlKOue 1) O Ger 1) 2kt 40 8T (i v 1)
f =) IO e ) (3 e 1) v 5SS ke1) - 25B(ke1)),
e 2500 (e AR Cer D ERe D (8T e D =3 (1 1))

PoerK e D EH (e D P 1 K (K k1) +E k+1)}K1(k*1\3“{k*l) 13,33

= oM+ (AR oY) Fsbike D (A=A a0 20 v

—~

x

-—
5

~ aheoat B 00a%va o) e o @l God e <2200 O Y e

v=l,2 (3.38)
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kY = yhOeen) w0t GOP (i) ¢ trstke DR
r st et )R (e D) (e 10 (et AOHT (e 1) +20er 1) 1K T (ke 1)
» el Puk/k) = Bk TG -1 () TaoT (o) (89T (i) at (1) 89 (k)
e BT S Ger B 1P () (M) =Y (K)) (3.35)

The recursive eanztions (3.30) and (3.3%) are identical %o eguations
(3.18) ana (3.22) in the perfect information case, with the same fnitial
conditions, s that the solution st k) and sh(x) tn (3.30) and (3.3%)
are squal to 3%(k) and she) in (3.18) and (3.22). Thus, as far as the
faollowers are coticerned, they play a "separation principle" stratesy
which consists of the optimal deterministic feedback law of their bdest
estimate of the sbtate. The leader strategy Includes his own estimate
and a term i{nvolving a difference in estimates. When doth estimites are
the same, the leader also plays as in the "sgparation prineiple".

-

2. Perfect Information for Coordinator

Consider the probiem in which the ccordinator has perfect stat

(%)

measurement while the lower level subsvstems have avalladle only nelsy

output measurements. In additieon, we assume that conditions are sudd

-

that the coordinator can daduce exactly the Llaower level subsvstens'

state estimators, and the lower level subsystems have the 3ame nelsy

)

<r

neasurement, L.s., =Tk) = 2200 = 200,

Whan the coordinator has gerfact 3tate seasuremen™ 1ad cin dedune

axactly “he stat2 of the lover lavel subsvatams' state estinator, .o,

49051 and go(k)=C. ilae 22(%) X ozi). The croolem 13 of  Maestad
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intormation" type except the coordinator does not have to estimate its

own state (E(x(k)/z%k)]=x(k)).

The control law of the coordinator is
W (k) =~ Y00 x(k) = o (MK (R (k) =x (k) (3.36)
and the control laws of the lower level subsystems are
ul(e) = =a A t)RMK) + 80P (k)] {=1,2 (3.37)

where E{x(k)/=(k)]=K(k). The optimum cost-to-go is

, xte) T st st x(k)
JO (k) = % N *%yo(k)
R -x(k)) 85T s [Rik)-x ) )
(3.33)
o = RTaastaoreo « oo =12 (3.39)

where all matrices are the same as in Section 3.2.1.
3. Ne Measurements for Subsystenms

Consider +the problem ir whicn the coordinator has a noisy
measurement, while the lower Llevel subsystems have no gseasursment

available to them and are restricted %o using only a priori Laformation.

When the lower lavel subsystems have no measurements, {.e., Hi(k);D
(nuli matrix) and z1(%)s23(0) for all k., the oroblem is also of nested
information tvpe. The control law of the coordinator is

uP(k) = =) YIROUO) = ACLOM( (R -R(K)) (3.40)

and the control laws af the lower laval sudsvstems s

»

i - [ IR > - \ T o .
uaix) = —Ai(k)LA\k}Q(k) + 87000, i=1,2 3.9

where  IT{xwk) z%0)] = R9%Q), vt ziv): = (k).
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The optimum cost-Lo-go is

A [ %00 17 st B %0(k) 1
37K = 3 + 5Y°(k)
R0 BT sC0al R0
(3.42)
oo = Beosteor) « ) i=1,2 (3.43)

where all matrices are the same as in Section 3.2.1.
Substituticn of (3.80) and (3.41) into the system equation gives
x(ke1) = AG)x(K) - (B0)al (0)a(x) - B2()a2 () alk)R (k)
- (8%(k) - 37 (Al (K)BO(x) - B2(x)a%(%)BO (%)) (k)L (k)R (K)
- (8%(x) - Bl (K)al(x)89%k) - B2(x)a%(x)BO(k))A ()Y (k)

(%) -R°(%)) (3.44)

It follows that the optimal estimate of the states by the lower
level subsystems, given only a priori information, i.e., ao output
measurement, is given by
Rx+1) = (a0)-8T(x)a (k) a(x)-82 (%32 (k) A(K)

~(8%(x)-3" (1) A" (x)8O(k)-82 ()2 (x)8%(1))a® (k)Y (k) IR (%) (3.15)
with initial condition %(0/0)=%(0).
In addition, when X(0)=0, then X(k/%)=0 so that

uoi(k)

o9k (K) - M()1XO(k) (3.46)

and wi) = -at ()8 Cu(),

'.J
"
[N
™~
Wl

.
=
-2
-

3.4 Constrained Decentralized Structure

It may be desirabls to have a control poliey that is simplsr o
implement than the optimal policy. 3atisfactory concrol of 3 high-order

P

linear system may often be achieved uzing relztivaly fawer svstam
% J R




36

measurements and a controller of low order. This has been the
motivation for a number of optimal designs, using output feedback or
dynamic controllers of a specified order. For recent work in this field

we refer the reader to (31,32,34,37,38,54].
3.4.1 Decentralized Control with Instantaneous Qutput Feedback

Consider the stochastic problem where a restriction is placed on
the control of the i-th subsystem and the coordinator at any ianstaat to
be a linear transformation of the measurement at that instant. Also,
there is no information *kEransfer among subsystems through thelr
controls. This simplifies the problem since a filter is no longer used
to estimate the state. Then

wlo) = Flaozi),  i20,1,2, k=0,1,...,N~1 (3.48)
where Fi(k) is to be determined to minimize the expected value of

sl

Consider the augmented system (3.12) and the measurement

i) = B GOx0) + gH), 120,12 (3.49)
Then
wio) = flaoatoxtk) « FRRIEN(K), | 120,1,2 (3.50)
and
2 . . .
x(k+1) = (Ak) + 3 BR()FH(K)EH (X)) x(k)
i=zo
2 . . .
+ Y BHKIFTRIEN(K) + v (3.51)

o]

-
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Define P(k) = E{x(k)xT(k)} and note that x(k) depends on §i(k) for
i=0,1,...k-1 only, implying that £(x(k)vi(k)}=0. Then the recursive
equation for P(k) is

2 2 .
P(ke1) = [A()+ Y BHOFFE () Tp (A )+ T BHUF (o 01T
i=0 i=o

A S N '

2 . . : . .
+ 3 R0 FE0EE (O FT () 8T () + (k) (3.52)
i=0

s " ird

mma 3,1 If the linear systam described by (3.12) is controlled using a

linear control policy (3.48), i=1,2 then the expected cost (3.1Y4) i=1,2

[RE—
o

can be expressed as

| . |

N

eldt0) = felTost ] « 55 test(1)a(i-n)
1=k+1
. N . . . o : .
. + 3 7 teertT-n R =03 -nstet (-0 18t (-0t (1)
l=k+1
" 2 . . . . . .
. + 5 terdT(1-1)83T(-n)st(n)Bd(1-1)FI(1-1)F (1-1))
j=o
. 14 i=1,2  (3.53)

anere SH(x) = ol)+atT oo T cor o st castto

o eed

"

2 . . . 2 . .
a0+ Y 80 eI (01 s ke N a0+ T 8300 eI ()8 (k) ]
j=0 j:o
iz1,2  (3.5%)

—

st = ot (3.55)

Proof The proof is by induction.

L JU— | [I—

Consider the augmented system (3.12) and the cost oriterion (3.14).

The assumption obviously holds {or k=N. For any &

Breewsdd R

Bosemed




-1 :
gb{\ PR e+t TEDR DU D T+ de T a0 (0 x (W)}
L=k

eldti)]

= (et (e ] + BHxTC00 0) xC)+u T B0 R Wt ()
i=1,2  (3.36)
with k=k+1 using (3.53) in (3.56) and after some algebra the assumption
holds for k=k+i. Thus (3.53) holds for ¥=0,!,...,n. The necessary
condition for a minimum at each step is that the derivative of the

3
repaining cost with respect to F*(k); 1i=1,2 must equal zero.

£10k) = —(R1+8'Ts (e 1B 11781 TS (ke 1) (4899 () 8048282 () KE)
pOo)H ! TLa o (k) g ' Teghy-! (3.57)
22 k) = -[R%482Ts% (ke 18217 182 52 (1w 1) (A+80FC ) 02 TR (1)1 )
P (k)42 THZR ()42 M) ! (3.58)
or
STNK) = T (o CAGK)+BO RO HOK) T (%) (3.59)
FN (k) = 2 Cr{a ) +BO (k) FO ) HO0k) 1T (%) {(3.80)
where
) = -t osdtotosi o1 it ot Gosd Gandeo)
1=1,2, j=1,2, 1#j
k) = (rrao+«tdaoritartoaanlir-nttord Gosd o)
1=1,2, §=1,2, i3
wlii = -(rbgo+etTeosicernaion 1wt Tosigen 12,2
tik) = pcoatToatatuoecostlvo«=tco ! i=1,2

Lemma 3,2 I a linear system Jdescribed by (3.12) is coatrollad using 2

('S ]

Linear control soliov (3.88) for iz then the axoectad 2¢st (3.'%) for

i=0 is expressed as




f:‘!

E(J2(0)] = 3E0xT ()80 x()] - 3 3: ersO(1)a(i-1)
i=k+1

+ POl (o) (RO(1-1)+BOT (1-1)5°¢1)BO(1-1)JFO(i-1)=0(i-1)

2 . . . .
+ 3 eeed ' TemnpdTi-nsonedi-ned (i-n=dt-nl
j=1
(3.61)
where
$O(x) = Q%k) + HOT()FOT k) ROk ) FO (k) HO (k)
+ fq(k)+a°(k)“°(k)a°(k)+3“ st et cort () 1753 (ke 1)
1-]
(A(x)+BO(x >s°<<>p°(ky+\ st et out (k)] (3.62)
‘_:'l
SON) = Q°%(w) (3.63)

~

At each step the necessary condition fer 2 ailaisum is that the

derivative of the remaining cos:c with respect to each element of FOlk)
must equal zero.
=0 FaQrson 2a0rse 1/, ...2/ Q. T..O . -
FOLi) = ={R%{)+(3%0ik)+8 (i) 17 () 200 +52 (1) 12 () 39 () ) TSP (ke 1)

(820x)+8 1 () 11 (k)89 (1) +32 ()12 (1) 8%(%)) 1™
[(3200)+3" (1) 11 () B (k) +52 () 12 (1) 8% (1) ) T30 (k1)

Cagi)+8 (ot ot o (0820012 (a0 T2 00 #2 (k)]
P () [8000) 480 T )8 T (1) +80 () T2 () 82 (x) ]
L8100 T (10 3%(x) +82 (102 (%) 3%00) 1750 (e t)

(3! cort (a0 T 0= ot T T (%)

+82 (M)A 0 T2 (0= 0072 T 0w () 1)
(590021 HT (0 + (HOC) T OB o w0 () T ()RS0 )

(1) (HO(K)+H 3 TH (k) H \k)+:°\£}T2(k)Ha(5))r
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S(=00)+H GO T 0 = ) T T o 80T (k)
A T2 =2 00 T o a0T () 1 (3.54)
Theorsm 3,1 The sequences (el i=0,1,2; %=0,!,...,8=1 of the i-th

subsyscem that minimizes glutiud)) 1=0,1,2 subject to the coastraint
(3.48) are given by the equations (3.59), (3.80) and (3.5%) where it is

assumed that the regquired inversed exist and

2 o 2 S
Lopleen) = a6+ Y staartcortio et T st o)’

i=o0 1':0
2 . . ‘T ;
+ CsteortuaEtcortTao s oo v (3.55)
i=0
P(0) is given.
2. st = oo« T oo Toor coettoat v
2 2
. 3 3 i “ 3, i 3.
s (A= T areost st (a1 st e DAt + T e tartaangtio )
i=o 1=0
i=1,2 (3.66\
stan) = Q) i=1,2 (3.87)
3. 8%(k) = Q%K) + ¥ G FON ()R () FO (k) E (k)
2
. A — i ;% i Ry
+ LA +B200 (0 H% )« S st o e o st (0 1 Te ey
i=1
Q a0/ . 2 i iR N A .o
(a(k)+B2 () FOLIE )+ 3 22 ()P (™ (k) ] (3.83)
i=1
$O(N) = Q%) (3.69)
The sequencs (Frx)1, 120,1,2y k=0,!', yd-1 27 the ooordinator
and the 1{-th subsystem are the solution %o the Jdiscrete two-point
boundary value oroolam., Note that (3.35), (3.5¢) and \3.37) are
recursive ralationships for gensrating Pi(k) and SMK), i=0,1,2 oxceot
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(3.65) which is a forward equation and (3.66) and (3.67) which are

backward equations, and all depend on the sequence Flee)} or (1K)}

and {?(k)} are known no simple calculation will solve the problem. We

suggest the following simple procedure to solve the 2quaticas:

1, Make an initial guess for the gain {F?(k)} and {Fé(k)} i=1,2;
k=0,1,...,8-1. Let 3i=0.

2. Use [F?(k)} and {F?(k)} to solve (3.65) forward in time to determine
{P;(k)} with P;(0)= 3(0).

3. Use [??(k)} and [F?(k)} to solve (3.66) and (3.68) backward in tiame
to determine {S}(k)}, i=1,2 and [S?(k)} with Si(M)=Oi(N), i=0,1,2

4. Use [?j(k)} and {Sg(k)} in (3.64) to determine (?;+1(k)}.

5. Use (P5(k)}, (SH(k)}, i=1,2 and (Fj,4(k)} in (3.59) and (3.60) to
determine [F§+1(k)}, i=1,2. Let j=j+1.

6. Repeat (2)-(5) until the desired degree of convergence is reached.

So far no convergence coanditions for this algoritam hnave been
found, but as with most algerithms of this type it is expected that

convergence depends on the initial guess.
3.4.2 Decentralized control with dynamic output feedback

Consider the stochastic problem where a dynanic controllsr of a2
specified order {or the i-th subsvstem and the coordinator described by

wi(ea1) = DR Wi« ()2t (k)

P

=0,1,2 (3.70)

. i i o e .
wnere w-o = RS is the state vector of the controll

1]

rs used, then

.
1

vl = wieowtaosrtotey  1=0,1,2 (2.71)
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200 = a0 120,1,2 (3.72)

For a givea integer sl (0¢si<n) rind matrices ¥i(x), Fi(x), pi(x) and

(k) such cthat the corresponding sxpected cost E{J (uf)} will bve
minimum. Note that if s’z 0 the controller is reduced to
ut(e) = Fhx)ztin) i=0,1,2
and if sl_= n, an optimal solution is obtained. The cost functional to
be consider is the same as in Section 3.4.1.
Consider the augmented state vaotor
~ T T 2T
o) =0T OT Tk BT )
then
~ Ing 2 ~3 ~
T(ket) = (A(K)+ 3 B {k)FH (%) E (k) )R(K)
i=o
2 -~ ~ ~3 i ~
# 3BT IR EH () + 2w (k) (3.73)
izo0
where
- F el wlx) t
Fr(k) = — .
L HE(k) DR (k)
. (1] {n
I = -—=1131 2
L 0 lz::si
iz=0
and
T = PO ORI TN &) 120,1,2 (3.7Y)
whare T="110]
s
n }::si
i=o

Let 2(%)

" T - : .. . ,
Elx(k)x* (k)] and she 2cst Functional o7 “he 2oordinator is
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2 ‘ 2
1 B(ket) = (8 ) S OF PG Y T 0FT
1=0 1z0
2 .. i ~
£y B (OEFT (OB e (X) (3.79)
i=o0
P(0) is given.
2, Sl = @t ETRHToRM (R
2 s 2 .
A+ Y B OEN TS (ke ) (4 Z ol (3.80)
i=0 iz
Sty = @)
2 v
3. 3%(x) = @° + BOTROT () ROFP (O + [R+BOFR(1)E Y B ()ER)T
i=1
2
SO(k+1) (3+BOFO (k) HO% ) 375" (k)EY] (3.81)
iz}
SO(w) = QW)

gse

Again the sequence {FX(k)} i=0,1.2; %=0,1,...,8-1 of the coordinator

and the i-th subsystem are the solution to the discrete two-point
boundary value problam as the previous c¢ne bubt are more complicatad to

solve.

Lo

the case where either the c¢oordinator has noise in its
measurement or the lower-level subs'stems have o noise ian thelr

-~

measuremsnt, and want to use outpub feedback, they can do so by reducing

the dimension of their controller to zero.
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Conelusions

ry,

The control of an intercconnected set of linear discrete time
stochastic systems has been coansidersed. The organizational foram of the
system permits one decision maker tc be the c¢oordinator or leader and
the decision wmakers for the other subsystems are =21l followers with
respect to the coordinator, but they use the Nasnh strategy with respect

to other second lesvel decision omqakers. goth centralized and

decentralized control structure were considered. 4ds in

n

ingle decision
maker control problems Wwith output feedback gonstraints,
decentralization constraints generally lead Lo tweo-point boundary valus
problems. Zxplicit recursive fermulas {or these two-point boundary
value prodiems nave been derived. The sequentizl decision approach
seems Lo be a natural cne when the cost func:tion associated with one
decision maker nas a more global significance compared to tha others.

This decision maker takes the role of 2z coordinator and lsader.
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4. STACKELBERG COCRDINATIOM

WITH PARETQ RATIONALE AMONG LOWER-LEVEL SUBSYSTEMS

h.t Inteoduction

In the previous chapter, 2 sequential decision apoproach Lo the
control of an interconnected ayatem, where the lower-level subaystems
choose to play Nash pationale among themselves, has bYeen abtalned. An
extension of this sequential Jdeclsion, {5 o censlder the problem when
the lower-level subsystems ochoose to play Pareto optimal. b s
possible that the lower-level subsystems deaire to ocoperate within
thelr group. Then the resulting zet of contrals should Ye acheszen (ron
the Pareto optimal set of solutions. In this ahapter, we will
favestigate the Stackeldery coordination of 1 Jdiscrats Linear jquadratic
gausaian  problem, when the lower-level subsvstems <ccoonerate anonsg
wemselves. Saveral Lypos of faformation stpuckupre apre sonsitderad. The
main Ldeas in thls chapter are bastoally derived Uron Jhaptar 2.0 1o
avold reretition of ldeatlcal arguments, A more compact Sreatment s
presented,

u.z Deaant gy

,-.
£
15
5o
e
£

" ey :
3.2, *he Stackelbers approach © 5] mo *he coordinat.sn of the subavatons
L5 to conafder MY 33 1 Lrader and DML 1z fallowvers. oMY o

LR

exaet aewiladgy of 3Ll declsirz made by she 200
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L for each given decision of DM, assuming

minimizes Ji with respect to u
that all the followers asgree on an cooperation. With this assumption
the subsystems use Pareto optimal strategies among themselves. The

coordinator then minimizes J9 with respect to u?, considering that the

L which minimize

decisions {rom the subsystems rasull from cholces aof u
Ji for i=1,...,M. Additionally, the informabtlon sets include exact
knowledge of the systam dynamic DMO, DML, the measurements and the cost

functionals. The sbtabtistics of the random elements for all ¥ are also

included. Cdnsider the augmented system

x(ke1) = Ax(k) + 8%%(K) + Bu(k) + v(k) (a1
whete

T = 0 x0T T 2T )

T = 0T ' 920 ]

wik) = (T wftie) ]

x(0) and v(k) are Gaussian random veckors with zero means and covarliance
Y(0) and \(k). The measursment equation of each subsystem L5 given dy
{ .
o = wttox) « k) 120,1,2 (4.2)

The quadratic cost of the lower-~level subsystems baooues

2 . 2
J(u) = E:mgﬂﬂuh; ato; Eda*= 1 (h.3)
i=1 f=1
1 4 iN-:_“ Al n
z ExK(N)Q(N)x(N) * gE;,[xlkk)Q(k)V(k)+u‘(k)R\k)u(k)} (u.8)
kzo

Also, the cuadratic cost of the coordinator bHeoouwes
$2(u?) = 20D ()
N

/ E:(

Q

1
—

I

1

b

GO0 e = TR0 uC M) LS

387 B

=
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The equations that define the optimal solutions are as follows:

uo(uo,k) = arg min E{J(u,x,k)/z(k)}
u
uoi(k) = arg min E(J%(u®,x,k) /2% %)}
©
* *
u (k) = oug(u® k)

The optimal cost-to-go at each stage are

J* %) 2(J(u,x,k)/2(x),u = u,u = u®t}

"

" ) %
J°7 (k) E(J%O,x,%)/2%K),u® = u® ,u = u'}
Centralized and decentralized structure of information are investigated

in the following section.

4.3 Coordination with Centralized Information

In this section, two <cases of «centralized information Lis
considered, perfect iaformation and nested information. Recursive
equations for the design of feedback controllers f{or the coordination
and the {ollowers are obtained., For simplicity, a svystem with one

coordinator and two second-lavel decision mzkers is examined.
4.3.1 Perrfect Information

Suppose all subsystems have perfesct information of the state i.s2.
z25(k)=x(k). Assume that the expected cesb-to-go of the lower lavel at
stage k is

1 .LT! 1. _1. 1
(k) = 5x" (Q)S(K)x(k) + 5 B(k) (u.5)

for sone deterministic mabtrix 5¢

~
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cost-to-go of the coordinator at stage
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VO(k) = FxT (K)SOCk) (k) + 330 (0) (1.7

for some deterministic matrix S9(k) and function 3°(k). The optimal

; : strategies are derived using dynamic programming:

| w0 (k) = -220)BT ()% (ke 1K) x(k) (4.8)
E u (k) = =al)BT (RS (A x (k) + 3°(k)u2(K)] (4.9)

where

: alk) = [R(K) + 5T(K)IS(ke1)5(x)]7)
g (k) = [RO%k) + ’éT(k)s‘;(km)é(k)]"‘

‘ k) = [A)-BC)AMKIBT (%)S(k+1) (k)]

; B(k) = (8%(x)-B(k)Alk)BT(%)S(k+1)8%(k)]

{ Assume all the required inverse matrices exist and

} $O(%) = Q°(k) + AT (kIS (k+1)A(k)

+ T8 Cer DB )BT ()82 (ke 1A (k) (4.10)
; SO(N) = Q°(\W) (4.11)
{ Fx) = g%%+1) + £r8%(k+1)A(k) (4.12)
g g%y = 0 (4.13)

S(x) = 2(x) + MLRMIN(K)
+ (R0 B02kYBT 082 (ke AT
S(k+ 1) (R -B ()% ()BT (%) 8% (% 1A ()] (4.14)
S(N) = (W) (4.15)
M) = AMOBTCO)S (e 1) {a(k) =800 2 (08T (0)8% (ke RG]
B(R) = B(k+1) + trS(k+i)A(k) (4.18)
g =9 (27)

These equations can be solved backwards in time with the given (inal

O
({7
O
~,
T
9 )
[14
[7/]
o
e
«
fe
ps
[
o |
1 7]
1+
n
W F
o5
[ 4]
¥

conditions. The condition For tne sxistan

the matrices Lo de Iinverted are geasiagulzr.
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4,3.2 Coordination With Nested Information Structure

Consider the case when the information of the states is iacomplete
but the lower-level subsystems know the same measurement i.e. z2H (k) =
22(k) = 2(k) = H(K)x(k) + §(k) and the coordinator knows bdoth his
measurement and all the subsystems measurement, z°(k) O z(k). Assume no
information transfa2r among subsystams through their controls. The
optimal strategies are derived using dynamic programming:

u, (k)

uo*(k)

1]

A0 BT (R)S (ke D LAK)IR) + 8O (K)u(k)] (4.18)

)

22T ()R () -2 M) (7 (%) %K) ] (5.19)
where ®(k) = E(x(k)/z(x)]1, X%%) = EB(x(k)/z%%)], Alk) and (k) are

defined as in Section 4.3.1 and

t(x) = 8°T(r-8¢)TsM (k1) (1-86G)A

Mk) = 8°T(1-8G) T(s¥ (k1) =5M (k1) 18 = ¥(%)
- 89T(1-80)TsB (k+ 1)K (k1) 84

G(k) = A(k)BTS(k+1)

The optimal cost-to-go at 2ach stage for the coordinator and the

lower-level subsystems are:

o [ }T [Sﬂ(k) OIS INRSICY "
J (k) =5 . + T (k)
lreor0co) 800 sCe0] ReoRe)
(4,20)
3tk = RTISIORK) + $8G) (4.21)

B T T,
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where

st) = @ + aT(r-8a) Tst (k+1) (1-BG) A-Y Py (4.22)

sB(x)

aT(2-86)TsA (e 1) (Z-8G) 4 + AT(I-BG)[S5(k+1)-5 (k1) 74

- aT(r-86)TsB (ke 1)K (k1) HA-Y TAOH (4.23)

sC(k) = - uTa% + aTeTeTsA(k+1)504

& ATCI-R(er DB TSC (ks 1) [I-K(k+1)E]A

+ aTrsB ke 1)K (ke 1) H-55 (k1) 1 TaGA

= aTaTBTE 8B (ks 1)K (ke 1) H-SB (e 1) ] (4.24)

8o (k)

B8P (k+1) + £rQ®p%(k)
+ Er(KOCr 1) 15O (ke 1) POk 1 /4D 60T (e 1) 222 (e 1) )
£Oka )8 M (er1) + SC(ra1)-288(ke1) ]}
+ 260{PO(k 110K (ke 1) H (ke 1) (85 (k1) =58 (k1) 1}
+ beK(ke) (H{kr1) PO (k1 1) T (k1) 2 E (ke 1) ]
T (k+1)8C (k1) (4.25)
S(k) = Q + (4-BePY)T(S(k+1)-G BTS (k1) 1[4~B"Y]
+ YTA%RACY (4.26)
Bk) = B(k+1) + trQP(k) «+ EeS (ke DR (ke 1) TH(er 1) P (ke 1740 HT (1)

r a1 1K (ke t) + br{[P(k/)-PO (%K) 108~ ] TP

(R + 8TS(k+1){I-BG]BIA2(M-Y]}  (v.27)
K(ke1) = Pkat/AOE (e D THe 1P (ke 1/ E (ke 1 (1) 17T (8.28)
Plkai/k) = A(kr)P(k/AAT(ke1) = (k) (4.29)
O(k+tsket) = (I-K(k-1)E(k+1)]0(k=1/k) (%.30)

P(0/0) = J.(0)

S

1l these recursive squations can be solved with ziven inpitial or inal
conditions. The existence condition of the scluticns is that the

matrices to be lnverted are nonsiagular.
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4.4 Constrained Dacenbralized Structure

Section 3.4 describes why output {eedback and dynamic output
feedback are more desirable in practical applications. In this seetion
we will derive the necessary conditions for Stackelberg coordination
when the lower-levels choose to use Pareto optimal solution with
constraint being placed on the controls. The cost functional of the

lover-level is

2 2
Z"lJL; uil'_o, Zul 1
i=1 131

J(k)

1}
i

J() = Tana ) x)

[4

N= 2
« 3o Pt « yatutTaorttoultor @
k=0 i=

2 .. .
Zﬁol

i=1

o
|

where

4.4.1 Decentralized Control with Instantansous OQutput Feadback

Wnen the concrols are constralned to bhe a linear LHrans

-,
oy

Jrmation o

measurement av that instant and there is no informatien transfar through
the control, then

ul(x) = slie)=to) 120,1,2 ry,32)
and

20 = B x(k) + R £20,1,2 (4.33)

. ol . . . - -
where F>(X) is to be determined to mininize the axpechad value aof

Ji(ui)‘
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Consider the augmented system (4.1) and the measurement (4.33). Then

ulo) = PR 8t k) + FHR) (k) i=0,1,2
and
2 Ky . ]
x(k+1) = [A(k) + 2 BE(FH(KE (k) Jx (k)
2 .19 .
+ 2 BHRIFHK) £ (K) + v(k) (4.34)
l1=z0

Then the recursive squation for 2(%)= a{x(k)x (k)} is given by

2
PCkat) = (A00)+Y BH0FE (k) k)]P(k)H(kHZBl(k)Fl(k) (k)]T
izo i=o
* Z,‘ai(k)?i(k)ai(:()FiT(k)aiT(k) + A (x) (4.35)

iz0

Lemma 4,1 If the linear system described by (#.1) is controlled using a

linear control poliecy (%.32), i=1,2 then the expected cost (4.31) i=1,2

can be expressed as

N
2(J(0] = JElxT(080)x()] + 3 37 ers(1)a(1-1)
1=k+1

N2
+3 20 (3 errt-niatai(a-i)
I=k+1 i»1
+ BT (1-n)s(1)8(1-1)1FL (1-1)=k (1-1)
+ ErrOT (o187 (1-1)8(1)B(1-1)F%(1=1)=0(1-1)} (4.36)

where

S(k) = 0(k) + Za*q--(x) ot ort()atx)

i=1

+ [A(k)-‘-i 32 () FH A (10 1 s (k1)

i-o

[4(&)+Za (%) T (k)55 (k) ] (4.37)

izo

S(N) = Q)
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The necessary condition for a minimum at each step is that the
derivative of the remaining cost with respect to Fi(k); i=1,2 must

equal zero.

FU %) = ~[R1+8'Ts(k+1)8717 18" TS (ke 1) ( 44898 (%) HO+82F2 (%) 62 )
PO Tra ook ezt 3! (4.38)
22% (k) = -[82+82Ts(k+1)821" 182 s (k1) [ 448970 (k) 8O+8 e L (k)8 1)
Px)E2Tru2e (1) 42Tz (4.39)
or |
FI (%) = A + 397008017 (4.10)
F27 (k) = C2[a + 8OF°(x)HO)T2 (4.41)
where

oo (ralsdwdsii-ind « wisdwdl i=1,2, §=1,2, 12
oo vl o pdgdviypronivdgdviyt a2, ge1,2, i#j
I R S LY OO DERS - BN D P IS

vi oz op()elligler glil + =iyt i=1,2

~

Lemma 4,2 If a linear system described by (4.1) is controlled using a
linear control policy (4.32) i=0 then the expected cost (¥.31) i=0 is
expressed as

NI

E(IO00] = JexT(0)S2ax)) + U 30 5esO(i)A(i-1)
izk+]

+ erFOT (1-1)0RO(1)+29T (1)89(1)80(1) 1F0(i-1)=0(i-1)

+ S ered TreonadT(i-ns0ned(i-ne M i-nzde-)
3=

(4.42)




55

wheare
$O(k) = Q2(k) + #OTCFOT(K)RO () PO LK IO (k)
2 .
+ (AG) + 3OMK)FOOEO(K) + Y BR(kIFY (o) at(x) 1TsO (k1)
i=1
2 1%
[alk) + 3200 + 3 stort aoelan) (v
i=1
$2(N) = Q)
At

each step the ncessary condibtion for a minimum is thab the derivabive

of the remaining cost with respect to sach elament of £9(k) must equal

zero.
Fo(x) = -[RO + (3%+3''8%8528%) T5 (k1) (598 '30%+55259) !
((8%:87'8%89728%) TsO (e 1) (A48 P at Y 1 ea2-2ar2s2)e
(42801 ' 50282 T (8 1Y 828080 T (ke 1)
(8! ar Iz TyoT ad2a 120 202 TyoTy,y
(40pg0Te (0T T O 282y p (907 T a®7%0 %)
+C3°+H°T1EAT‘TH°T+H°T232T2TH°T)}'I (4. 44)
Theorem 4,1 The sequence (F(k)} £=0,1,2; k=0,1,...,0-=1 of the i-th

subsystem that minimizes E{Js*(k)} 1i=20,1,2 subject to

the constraint

(4.32) are given by the equations (4.8%), (¥.40) and (1.21) where

it is
assumed that the required inverses exist and
2 2
i IO . o
Too(ket) = {4 + 2 3*F*ETIP00[8 + D stei(ort]
izo i=zo
2
alalsey=iail v aliT
* LBPFIRIZIET (R8T + k) (4.45)

PL0) is given.




2 . im s . X
2. 8(k) = Q+ p et eiToorrio)gt
izt
2 . 2 .
« (4« etrlatTsteen (o + 3 Bieleast) (4.46)
i=o i=o
S(N) = QW)
3. 8%(k) = @2 + £°T=OT(4)ROFO (k) 4O

‘ 2
+ (4 + 3979040 + 3
i=1
2
*2

siel* ()at1TsO (ke 1)
8

{4 + BOFO(K)HO Lel*pyuls (h.47)

1

[
1]

SOMN) = Q9(W)

To compute the cost incurred when the players use arbitrary linear

1y

output {eadback control of the form
ul (o) = kE(k)zH (k) (4.48)
the cost-to-go at stage k is
i ) - 1—\ T ] i » 1 " i &1y
JH (%) = SO (%)ST (k) x(k)T + sErS* (ke 1)A{x)
N - . o .
w3 2 Lot R -0+ 2T nstnat (-]
l=k+1

2 .
cL-nzt-n « JerkdTi-nsdT

J=o
itj
st(ned-ngda-n=ia-) (4,19)
where
sty = oix) + aiTeiTonyricioe)yd
2 2
w04+ Mo ) s e[ - TN Eh) (e
i=0o BTo]

sin) = ot
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The sequence (ri(k)) 1=0,1,2; k=0,1,...,n~1 of the coordinator aad
the i-th subsystem are the solution to the discrete two-point boundary
value problem. The simple procedure to solve the equations suggested in

Section 3.4.1 is also recommended here.
4.4,2 Decentralized control with dynamic output feedback

When the controls are constrained to be a linear dynamic output
feedback where a dynamic contr;ller of a specified order for the i-th
subsystem and the coordinator described by

whke1) = DRC)WH () + (k)2 (0 120,1,2 (1.51)
where wiiE RS% is the state vector of the controilers used, then

ul(x) vieowi) + Fao) =i =0,1,2 (4.52)

also

2+ (k)

HE (k) x(k) + £2(%) i20,1,2 (4.53)
For a given integar s* (0<¢s%¢n) find matricss Ni(k), ?i(k), p(k) and
Wi(x) sueh that the corresponding expectad cost g(oik)} will oe

ainimum. The cost functional to be consider is the same as in Section

by,

Consider the augmented state vector

) =0 ) T W) 200 )
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then
~ 2 MYty 2 ~ ~}_~ 1 ~
Feen) = (X + SOBFELHRO0) + JoBWI A0 « Tvo (uls)
i=zo i=o
where . : ]
" FH(k)  N¥*(k)
Frk) = | _. . J
L& (%) DR (k)
I = [ ‘f n
- 1 2
LoJd s
izo
and ,
k) = FHOERM) « T ) 120,1,2 (4.5%)
where T ={I1}10]
B
2
n E::si
izo0
Let B(k) = Zii(k)ET(k)] and the cost functional of the coeordinator is

J° = FTnBom)RY)

A
+ 3 0F%G0 R + BTEORCIER ()] (4.55)
k=0

Also, the cost {unctional of the lower-lavel subsystem is

2 : 2.
Joo= ety a0, Foxt =i
i=1 i=]
= TR
1N-—1 - 2 - . ‘
~ o~ -~ Y~ . -~ 3 ~i . , _—
£ 52 (FORIXMK) + ) TR OT (k)] {1.57)
k=0 i=1

The augmented system (%.51) and controiler (3.55) are o the same form
as (4.3%) and (4.32). 4Also the cost rfunctional are the same. The

following theorem can be Jerived using the same argument as Theoream 1.1,




Theorem 4.2 The sequences {Fi(k)} i=0,1,2; k=

coordinator and the i-th subsystem that minimize

subject to the constraint (4.55) are given by

0,1,.

e(di(x)}
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of the

i=0,1,2

FOx) = -[R° « (§°+§1FJ§°+§2F2§°)T§°(R+I)(§°+§1FJ§°+§ZF2§O)]']

((§°+§1FJ§°+§2F2§°)T§°(k+I)[§¥§1FJ§T]§‘+§2F2§T2§2]§

[§°+ﬁ°r’ﬁ’#§°T2§2}T+[§‘r‘§°+§2r2§°]T§°(k+1)

[HoROT, (30,507 15 1 op 2?42).5(;04;0?’

Flw) = rimti(k)+§°<k)?°<k)§°<k>Jriuc)

where
rlos (- EMIER e andBind) is1,2, 5002,
™ = [zi+¥3§j'ri]h gl iay)2, ge1)2
Mbos cfedRLETS (ke )BT IE S (k) 1m0, 2
L By RiTeRis (o yRAT o g .
5 = POOET (HP(0)ET +2] i=1,2

It is assumed that the required :inverse zatrices axist whers

= '°T‘§2)

H'+d

O A
1B = (F + BB RN « T B T
i=o izo
2
« B RZIET )R L Xk
1=0

2 s
2. S(k) = Q + d-’-f:lTE‘IlT(k)Pl?l(!{)n-
i=1
2 2
”~ g I ~3 L Tae ~ ~l
# {3+ 2 BFROOE IS (e (X« 33
1=0 120

S0 = 0

(4.58)

(4.59)

(8.50)

—
4
.
O
et
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3. %m0 = B9 4 JOTROT (O ROFO @

2

« (3 BOFCUOAT « E::%igi*\k)ﬁi]Tﬁo(kvi)
=1

8

2

-~

(3« BOFO)HO & Bt oanh (h.62)

g

M = W)
Agaln the szequetce (%i(k)} £=0,1,27 k=0,1,...,N~1 of the coordinator
and the {i-th gubsysten 2are bhe solution ko the disarste two-point
boundary value problem., The procedure used in Section Y.4,1 can be used

L0 solve for the solutious.
4.5 Conclusiona

As in all nonzero-sum Jdifferential sgames, there are a variety of
"optimal solutions', since the lawer-level may or @may anot cooperate
within thelr group. When the lower-level subsyatems, which are all
followers with respect to the coordinator or lz2ader, desire to cooperate
within their group, the @Parete optimal solubions are obtained. Soth
centralized and decentrallzed contrel stiructures ware 2oasidered. The

main idea is the same as Ln Chaphter 3.
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5. DECENTRALIZED STOCHASTIC STACKELBERG CCORDINATION

IN AUTOMATIC GEMERATION CONTROL OF INTERCONNECTED POWER SYSTEM

5.1 Introduction

An intercomnected electric energy system can be described as a
collection of subsystems, each of which is called a control area. Each
area is responsible for meeting its obligation to maintain the
appropriate system f{requency and supply its own load demand. Also, 2ach
area provides mutual assistance to its neighoors in accordance with the
basic operating policy of interconnectad power systems [23]. Two of the
most iImportant aspects of system conbtrol involve the requlation of
systam frequency and net power interchange. When the interconnected
network is small centralized techniques can be used quite effectively
(19,20,33]. However, in the more general case the
commpunication/computational costs involved in implementing a centraliczead
controller often become assential. Furthermore, %the trend in the
utility iadustry is stroungly to digital control, wusing the digital
computer for calculating sgeneration changes age. 4 discrete

.

formulation of tnis probvlem would thus seem of more practical intersast.

Interest in the dynamical asoscis of load frequency control has
stimulated the apolication of modern control technijues to this problen,
particularly the “heory of ootimal linear regulator (25]. <Calovic

{19,20] was the

"y,

irst to cleary Jdistinvuish tshe steady state nrodlanm

Jrom the transient oroblem. The procedure used is o adicin the




O
(48]

the tie line Dbias constant specifisd as the area frequency
characteristiz.) to the system equations (Fosha and Elgerd [25] adjoin
integrals of f{requency and tie line f{low errors). These new state
variables as well as the original system state variables are included in
the cost functional, 4s a result, all areas capable of doing so will
drive their area control errors to zero in steady state provided the
system is stable. It is not clear f(rom the control seoguatlons what
contral acticns would be taken‘in each area i any area is nob able ta

control optimaily.
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new design procadure s based on a stochastic Stackelders strategy

extended by intreoducing optimal regulation with individual choize o

"y

cost  functional to =ach control area., The problem now bheccomes 2
multicriteria prodblem with multi-decision makers. This 1Is where
differential gzames theory is relevent to define "optimality". OJnecs the

optimality is definsd, we can calculate Ly (Xy is the controller 3zain

sontrol action on the arror

o4
.
-3
[1/]
jo'%

used by the area Lo accomplish the req
ACE) whiosh vary bhetween ars2as bSecaus2 af differences ia Jdvnanizs and

disturbance. The control laws are lin2ar funciions of measu
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for e2ach conirol area and do not reguire measursoent o7 Jisturbancs.
This new decentralized Stackelberg ooordination is investigatad for 2
three-arsa int2roomnected power asysten.  Jdnbimal solutions, sudoptimal

simrlifizations and simulaticn rosults are presentad,




a t
—y -

Bifats Lot g

S

[l

5.2 P2ower Svstem Dvnamic Model

A power system dynamic model was developed in (20,25]. where it is
assumed that area buses are stiffly intercounected, and that the
deviations in frequency and scheduled power interchangs are caused
solely by the load disturbances. If each area is modeled as an
equivalent electric generating system wheresin a ncnrsheat steam turbine
is employed, then the following scuations represent the interconnacted

power system linearized about a given ancminal operating point:

"t . = . . . o]

%(at_,_) _;g_lf‘ af; + ';:HL (A‘cl“aptle,l“"\“u) (5.1)
v i i
o ) -
dt Tti
g_h(asgi) = _d (.’.\PCL-AS;;)_—_I__‘AF-,_) (5.3)
dc qu hS
N
d QSP-ie’l) = EE:TLJ(Afi-AEJ) (5.%)
d =1
@ = . N . .
ACE; = bafy +aPi. (5.5)
The syabeols are defined as {ollows
¥

£ nominal svstem frequency

Hi inertia constant

_Di system damping

T. turbine time constant

Tg sovernor time coastant

T;j transmission copstant

Ry spead drooo

bi {requency btias constanth
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Afi requency deviation
‘Bpti turbine output deviation
4338; governor posicion deviacion
AP, net power flow ceviation
vle, 1 N
éSPci control signal-command to speed changer
AE’Li load disturbance
i
€4y plant nolse

The valuss otf the parameters are as follows:

PPO = Pr] = pl"2 = 2000 MW

Hy, = Hy; =1Hy = 5 seconds

D, =Dy =Dy = 8.33x1073 pu M/Hz
Toy = T“ = Tt2 = 0.3 sec.

Tgo = Tsl = ng = 0.08 sec.

Rg =Ry =Ry = 2.4 Hz/pu MW

)

Pije,max = 200 M
5?-6} = 30 degrees
Tij = 0.545 pu MW
by = 0,425

For more complete definition of the model and terms see [20,25].

An appropriate {formalizabtion of this problsg involves Zefining the

following linear quadratic regulator problem:

state eauation x(2) = Ax(¥) + Bule) + Dv(t) + g(¢) (5.5)
output equation y(t) = Hx(t) + N(L) (5.7
-:c -y ~r
cost function J 2 {«*0x + u-Rulde (5.3
0
where, for cach control area che state regtar




65

xi =z (Afi, AP+, Asgi, &Ptie,i' IACEi) (IACE-L =.fACEidt). These new
state variables are included {or the purpose of inducing the steady
state errors ([20]), the control vector u; =0P,; , and the disturdance
vector v; stL; with i=1,...,n. The plant and measurcment noise vector
£(t) and 7n(t) respectively, are nodeled as zero mean mutually
independent stationary white Gaussian processes. The matrices R and Q
in the cost functional are selected in such a way that emohasizes the
ACSi. For simplicity we choocse'R = I.Here it is assumed that each area

has only cne plant.

5.3 Stackelbers Coordination

In accordance with the basic operating policy, the desired goal is
tc regulate each area control =srror, ACEi, to zero without wusing
excessive control effort. Each control area problem c¢an he {ormulataa
as a linear regulator problem with 2a cost functional of its own.
Decision making by any area to obftain optimum control performance lor
its area will effect other areas. With mulbicriteria and aultidecision
making we have to define "optimality". 1In differential gaames theory
"optimality" is defined in terms of the rationality assumed by the
decision makers in computingz their controls. Zach area can choose 2
strategy denending on the dynamics of its system, ifs iaformation and
its computaticnal capability. Since we h.ve more than twe areas, It
seems approoriate to apply Stackelberg coordination f{or decentralize
control to this problam., Designate an area L2 %e a coordinator who

coordinates cthe <cthar 2areas which are viewed as [allowers. The




coordinator chooses a leader Stackelberg strategy to play with the lower
level subsystems. The lower level subsystems may or may not cooperate
among themselves so they can either choose Nash rationale or Pareto

rationale teo play between them,

The controllers are constrained to be of the form
wie) = Fim)vice) 1=0,1,2 (5.9)
where yi(t) is the measurabls output of each area and Fi(t) is chosen so
as to minimize the cost functions. The resulting necessary coaditions
for optimality of Fi, for discrete system, are derived in Section 3.0

and Section 4.4. A simple aporoximation computational algorithm is also

suggested, but there is no guarantee that the algoritam will convergse,

5.4 Desizn and Sipulation Studv

A three-area power systsm with numerical constant as given in [2%]
was chosen as the basis for this study. In discretizatica of the
system, LINSYS ([11] was used. Since we are only interested in
load-{requency contrel, we can consider the turbine controller fast
relative to the rest of the systam. 2y assumption above the GLtime
constant of the system is approximately 1 sec. (28], so we chese a
discretization interval of 0.2 sec.. After discretization LINSYS was

used to determine the eigenvalues, controllabiliby, and sbservability of

[

the discrete-time system. The discrete-time system with discretization

interval 0.2 sec. is stablzs and controllable,
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Consider a discrete versicn of a three area interconnected power

systen:
state equation x(er1) = ax(k) + 8%°%(%) + 8lul(x) + 32u?(k)

+ Ew(lk) + v(k) (5.10)
measurement equation yi(k) = ale(i) + atk) i=0,1,2  (5.11)
cost function o= xTmed (n)x(n)-e-:g;[:(T(k)Qi x(k)

culTorbulo)  1s0,1,2 (5.12)

where for each area the state vector is

(k)

i i
(Kl1, ey -‘(—u)

(Afi, Apti' asgi, Aptie,i)

The control vector is uy =45Pci and the disturbance vector is Wy = AP
where i=0,1,2. The plant and measurement noise vectors v(k) and 7t (%)
are zero mean autually independent staticnary white (aussian processes
with 0.001 per unit standard deviation. The matrices appearing in the
cost function are defined as ia the coatinuous case. The measurable
output vector is formed 2s a linear combination of statss reguired 5O

have zero steady-state values:lf.,APt

=

e
element of matrices appearing in (5.10) are given in dppendix 3. The

.

object 1is to design a linear (feedback control ui(k) i=0 1,2 .o
compensate the effacc of constant or slowly varying dissurbance wix!
using oanly the output yi(k). For any constant or slawly varving
disturbance w(k), using the Smith/lavidson [55] acproach, consider tue
augmented systen:

Qke) = T+ 30 ) + 82020 = 30000 + TG (5.13)

Prx) = BN - 5 i20,1,2 (5.1%)
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where
k) = el =x(0)], TH) = Lo ket -u*iw)],
L y{k)
T = [yt -y
L v
The linear control law ul(k) is
Moo = s 120,1,2 (5.15)

i . . . .
where £4(k) is determined using the decentralizsd stochastic Stackelberg

method.

Area 0 is cnosen to be coordinator or lszader. Then area ' and 2

are followers with respect %o area 0. When the lower 1

1}
<
£
’—4

subsysteams

choose to play Nash rationale the resulting controllers are as de

»s,

ined
in Section 3.Y%.1, ‘Vhen the lower level subsystams chcose to play Parsto
rationale the resulting controllers are as defined in Secticn H.8.1.
The matricss R and Qi appearing in the cost functional (5.12) are

selected in such a way that the cost function for each area is

2

i - VAP
J7 = dar tie,

k=1

N,
L Ocrl) + AP

» 2 2 ,
s Gert) + ACE; (kri) + up(k)  120,1,2

5.5 Discussion on Algorithm apd Resulbs

So far no convergence conditions {or this algorithm have bean
found, but as with most algoritbms of this type it is {21t that
convargance Jepends on the 1nitial zuess. 4 ctest for satistactory
gonvergence in cost is insertad when the coamputational procedure is

implementsa. The iterative procedure ¢coavergad in 203t. From the test
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results, one might hnope that it would always converge to the ‘'optimal
solution', Unfortunately for certain systems the limiting values
produced depended on the initial guess. 1In these cases, the algorithm
converged Lo a solutlon to a two polat boundary value problem one of
whose solutions is the c¢ptimal., It is the nature of gpecific optimal
problems to have local as well as global minima. Since uniqueness has
not been proved, all solutizns to the boundary value problem must be
found to determine the global minimum. This difficulty with uniqueness
could be antiéipated since the necessary conditions are local. One must
therefore find a good starting point if the procedure is to converge to

the optimum.

The computational algorithm for the solution of this problem
suggested in this work can not guarantes satisfactory results., For this
particular example the algorithm has exhibited rapid convergence so no
more exotic technigues have besn tried. The method developed in this
work is suitable f{or solving f{inite time problams. Unnecessary
2omplexity is particularly burdensome in these problams as the time
records of all the controller gains must be stored., The algorithm
proposed can provide solutions for many problems at a reasonable cost,
but it should be noted that the compubter time will increase a2s the state

dimension of the system, the number of gains and the number of time

intervals increase.
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Fig 5.1 shows the curves of frequeacy and tie-lie variaricns for a
free system response upon a 13 step-load change in area 0. Fig 5.2
shows the system response under output {eedback Stackelherg ccordination
with the lower-lavel using Nash rationale within their group. The
diturbance is the same as in Fig 5.1. FTig 5.3 snows the system response
under output feedback Stackelberg coordination with the lower-lavel

i

using Pareto optimal within their zroup, o is chosen to be 0.5. The

disturbance is the same as in Fig 5.1.

From the results of the computer simulation study, it is concluded

tackelbersg

7]
cr
(o]
[¢)
23
[4)
w
cr
'-‘
(]
w

that in this particular example decentralized
coordination retains favourabls transient {eatures. However, <the
disturbed area still has a small steady-state srror in deviation of
frequency (.008 Hz.). A rabtio of the coefficient of weighting macrices
Qi and Ri plays an important role in system response. It should be
noted that improper choice of 31 and Qi can make the systam unstable or
this algorithm may not give desired systsm response. However, a good
choice of Ri and Qi depends on the system. By trial and srror the

suitable values can be selactsd. However, the implsmentation of these

({3

control sequences in practice is complex, since the controls vary with
time. Therefore we suggest a subootimal simolifisation of the control.
These suboptimal simplifications are selected from she coastant part of
2ach control sequences, respectively, and are used thrsughouts the antire
period. Fig, 5.4 shows the olots orf ths optimal gains of area J,1,2nd
2 The constant zains of eash area are chesen to be (-.1,-.39),

(=.09,-.5) and (-.09,-.8) raspectively. ig. 5.5 3hows the svatan
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responses under suboptimal simplification. The responses do not have

significant difference from the responses under optimal solution.

In this chapter, an attempt to develop a new decentralized linear
regulator approach for load-frequency control in a three-area
interconnected power system has been discussed. The method is based on
decentralized sbtochastic Stackelberg coordinaticn. Tach control area
uses a feedback control based only on measurenents trom Llts own area.
Also, the area is free to select an appropriate cost function. The
extended theory 1is applied &to a discrete model of a three-area
interconnected power system, A aumerical design method utilizing a
QFOportioﬁal-plus~integral control structure is suggested. From the
studiad example, this methed gives satisfactory results. The adjustment
of a desired speed in dynamic response is possible by adjiusting the
elements of the weighting matrices Qi and &t. Unfeortunately the
stability and convergence of the procedure has act been established vet.
Since counstant control laws are preferable in practice, we also suggest
a suboptimal simplification in the controls which perforas quite well in

our particular exanmple.
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6. CONCLUSIONS

In the first part of this thesis, we have reviewed the equilibrium
solutions of a two-person LONZSCG in which we have modelled the effect
of randem disturbances by including an additive zero mean white noise in
the state dynamics, whose statistics are not necessarily known to the
players. Both cooperative and noncooperative solution concepts, 1.e.
Pareto optimal, Nash equilibrium and Stackelberg equilibrium, are
examined. Results available in the literatures indicate that solutions
for this class of game, and for different strategies, are affine for

sach player.

In the second part of this thesis, an interconnected set of linear
discrete-time stochastic systems, where N dacision-makers try to
minimize different criteria, was introduced as an extension . of
differential game theory. The organizational {orm of the system permits
one decisicn maker to be the coordinaktor or lsader and the dJecision
makers for the other subsystems are all followers with respect to the
coordinator. The followers may or may not cooperate among themselves,
so they can selzct Nash strategy or Paretc optimal with respect to the
other second level decisicn makers. Centralized and decentralized

control structures wvere considered. A decentralizad structure is mor

[1:3

realizable since the control secuences are functions of neasurabdl:

output oanly. The e2quilidrivm solutions are obtained via dynamic

programming. The solutions of the ceatralized structure , botn perfsct
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and nested inform;tion, can be obtained backwards in time with given
final conditions. But decentralized constraints lead to a discrete
two-point boundary value problems. A simple procedure to solve this
problem is suggested but the conditions for convergence are not yet
available. As with wmost problems of this type, the solutions depend

very much on the initial guess.

Finally, decentralized Stackelberg coordination is applied to a
three-area interconnected power system. This method allows each control
area to select an appropriate cost function and feedback only its own
area measurement which is more.realistic in practical situation. The
design procedure is emphasis on the proportional plus integral feedback

control. The study gave a satisfactory results.

Further study of "decentralized Stackelberg coordination should
include the stability and convergsnce condition of the procedure.
Comparison of this control with other controls is alsc suggested.
dnother interesting extension of this work would be to investigate the
stocnastic Stackelberg coordination of nonlinear systems. Since the
diffesrential dynamiec programming f{ailed to obtain the solutions to
V~person nonzero-sum Nash equilibrium solution, the same oroblem still
exists for using this method to solve nonlinear stochastic Stackelberg

coordination.
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APPENDIX 1

Consider augmented system (3.12)

x(kel) = a0 xlk) + 2%K)uk) + B! (ku'(x)

+ B200u2 (k) + v(k) (A.1.1)
then
ECx(k+1)/2()=x] = Ax(k) + 8%°®Kk) + Blul(k) + 82uZ(k) (4.1.2)
and quadratic cost (3.14)
Jud) = ITanet )
N-1 . , . ;
+ %g;;(xT(k)Ql(k)x(k)+ulT(k)Rl(k)ul(k)] (3.1.3)
Assume thab the expected cost-to-go at stage k is
(v /x()] = kTS (k) + Ty (k) i=1,2 (4.1.4)
then
g1 (%) /x(k)] = ain e(axT ()@ () et +JulT (R 0w e vt (e i) /x0) ]
= ain (7T (000 +JutT CORM (0wt (LT (ke 1) /2 (1))
’ i=1,2 (A.1.5)
when k=N
v = S mdet 0 xm) i=1,2 (1.1.5)
wnea k=ic+l

BV (e 1) 750 ] = HaxCo+atul (104890 ()48%0 (0)) Tst e )

(ax(x)+8Rut (1) 48309 (10)+8%0(%)) + Feest(a1)a(k)

; . -
+ %y*fk+1) 129,22 iz
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Using (A.1.7) in (4.1.5) to obtain ul(k) that minimize the expected
value of the cost function
ul() = - [RL+aiTsd(xe1)8%17T8iTst (ke 1) Lax (1) +BIud (k) 450 (x))
i=1,2 i#) (a.1.8)

Lat

-

L) = (REseiTsi(rat)Bl) 1815t (ka1 (A.

.9)
Then (4.1.8) becomes

wle) = -Lie) fax()«adud(x)+8%uO k)] i=1,2 i3] (1.1.10)

For 2-subsystems solve for u1(k) and u2(k)

ul(k) = -a (k) (Ax(k)+B%°(k)) (A.1.11)
and

u2(k) = =a2(%) (ax(k)+3%°(x)) (4.1.12)
where

abik) = (1-tisdpdaly-Troiocigdtly 11,2 1} (A.1.13)

Using (A.1.11) and (A.1.12) in (A.1.1) and defining

Ak) = & + 8lals + 82a% (A.1.14)

B(x) = 8° - 8'a’30 - 52280 (4.1.15)
We have

x(k+1) = Ak x(k) + B)Iu®(k) + v(k) (4.1.18)
Now
SO x(k)] = 3xT (ISP x(k) + $vO(%) (A.1.17)
Then

07O /x ()] = min E03xT(K)0° (%) x k) +4uPT () ROCIOU ) -1 (ex 1) /2 () ]

u®(k)

= min (3xT()Q0(k) (i) +3uCT () RO (k) U@ (k) +EL VO (ler 1) /() ] )
uO(k) ~ -
(4.1.18)
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At k=N,
o) = hTnoo ) xan (A.1.19)
at k=k+1

(VO (ke 1)/x (k)] = 3(AC) () +B U () TS (a1 (A 00) x (k) +8 (6 )uO (k) )

+ 3rSO(k+ 1) AK)+3Y° (k1) (.1.20)
Using (A.1.20) in (A.1.18) we obtain
wC* (k) = -(RO4BTSO(k+1)B])"1BTSO (ks 1)Rx (k) (A.1.21)
Let
LO0k) = [(RO+BTSO (ks 1B~ 3TS0 (ke 1)2 (1.1.22)
Then
w0 (k) = -LO(k)x(k) (4.1.23)

To obtain recursive equation for $°(k), use (4.1.23) in (4.1.18)

and after some algebra

$O(k) = @9Ck) + ATsO(x+1)3-1OT (R8T 5O (K 1)B1LO (A.1.24)
s = Q) (1.1.25)
Yo%) = yO{k+1) + tr SO(k+1)A(k) (4.1.26)
¥2(N) = 0 (A.1.27)

To obtain recursive aqguations for S=~(k) i=1,2, use (&.1.23),

(A.1.11), (A.1.12), and (A.1.5). arter some algebra

stx) = Q) + (3-3°L0)TalT (k) rtat (%) (4-3°L0)

+ (RBLO)S (1+1) (R-3LO) i=1,2 (1.1.23)
st =t iz1,2 (A.1.29)
) =y l(e) & trsilie1)ax) i=1,2 (3.1.30)
) = 0 21,2 (A.1.31)
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APPENDIX 2

Given a stochastic Markov seguence of state vector {x(k)}

x(k+1) = A0k + 8°0)uC(x) + ' ()ut (k) + B2C)ud(k) + v(k)

(a.2.1)
where ui(k), 1=0,1,2 are deterministic inputs, v(k) random, and
measurements given by

21 (k) = 22(k) = HOOx(K) + (k) (4.2.2)
2%(k) D 21(k);2%%) = HOk)x(k) + £9x) (4.2.3)
The assumptions are the same as given in Section 3.2. Define
2¢(k) = (2'70),...,2! 70T (4.2.4)
%) = (2°7(0),...,2°T0)" (A.2.5)
(k) = E(x(k)/z%(k)] (a.2.6)
Rk) = Elx(x)/2° ()] (4.2.7)
Pk/%) = E((x(1)-R()) (x () =Rk T/2* ()} (4.2.8)
R(k+1/%) = E[x(ks1)/2* (k)] (8.2.9)

The recursive relations define the conditional expectations for lower

level assumptions given by

[U+1/%) = 40ORE&) + 820w + 8 (u' (k) + 32C)uP(x) (4.2.10)
P(k+1/k) = A(k+1)P(k/%)AT (k1) + A (%) (4.2.11)
Teel) o= K1)+ K(ke1)(20ce1) =B (er 1D (ke1/%)] C(1.2.12)
K(k+1) = P(ke1/%)HT (ke D (H(e DO (ke DT (k1) +See D] (1.2.13)
P(k+t/k+1) = [I-K(k+1)d(k+1)]2(k+1/%) (A.2.14)
2(0/0) = I(0). (4.2.15)
Alse
E(R(k+1)/2#(%)] = T(k+1) = 4%(%) + 2%°%0¢0) « 3'u'(x) - 32uek)

O
e

(3.2.1




Cov{(R(k+1)/z* (k)] = K1) [HOK+1)PCer 17K T (ke 1)+ (k+1) 1 (k1)
(4.2.17)

The recursive relation defining the conditional expectation for the

coordinator subsystem 1s given by

%9(k+1) z RO(ke1/%) + KOk+1)[2°(k+1)-HO(k+1)R (k+1/%))
KO(k+1) = POCks1/%) 80T (e 1) [EC (e 1) PO (e 1 /1) HOT (ke 1) +Z (e 1) ]
PO(k41/7Kk) = A(k+1)2%(k/K)AT (k1) + A (k)

PO 1/k+1) = [I-K°(k+1)129%(k+1/k)

29(¢/0) =3°(0)

Also
ELRO(k+1)/2% (k)] = ARO(k) + B%uO(k) + alul(k) + B%u(k)
Covix®(k+1)/2# (k)] = €Ok 1) [HO (k1) P (e 1/k)HOT (k1) +Z %+ 1) 1KOT (ke 1)

Assume at stage k the cost-to~gc for the i-th subsyscenm is
¥ o)
Yo = 327008 0% + 37 (%) (4.2.18)
The optimal strategiss for subsystem 1 are given vy

ui(k) = arg m1n :[ xL(x)qt (k)t(k)+5ull(k)R ()ul(e)+st” (k+1)/2%(%)]

ut(k)
{8.2.19)
it k=N
P = etdTanat ey /zaan)
= 22Tt anz(M) + demat(npi(w) (4.2.20)

e (k) = arg ain [,tT( )l (k‘((‘)*;trO‘( )P (x)*;ul‘( yalioulo
u*(k)

[a% (%) +2%u0 ) «2dud () 1 Tt (1e 1)

+
AT

[4%310)+8%° (o) +BEut (k) -2dud (1))

cr

-+

e e DK e D (EL e P (k10 T (ka D) ezt e 1) 18 Tk

(&*1)1 (a.2.21)

ﬁ,

+
()= PO}
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The minimizing control ul() is

ul() = -0rEC0)+B T (ke 1)B217 188 s (ke 1) [aR (1) +BOuC () +8u I (1) ]

(A.2.22)

Recall the difinition of LL(k) in (1.1.9)

Lik) = (R0 +8 s (ke 1) B 183 g (ke 1) (1.2.23)
Then

ut(x) = -LE () [a% (k) +B%uC (k) +8Jud (k)] (A.2.24)
For 2-subsystem solve for ul(k)_and ul (k)

ul(k) = -l (k) (A% (%)+B%C (k) ] (4.2.25)

w2 (k) = -a2(k) (A% (K)+B%u0 (k)] (4.2.26)
where '

Ao = (r-tigdidaiy-lgionisdnly  is1,2 13 (4.2.27)

Assume that at stage k the cost-to-go for the coordinator subsystem

R 7T st sBea] [ R0) ,
+ 57°(%)
e0-8on ) [sBTee) sCeal k)Rt C

(1.2.23)

is

3% (k) =

o}

it k=N
w2 (k) = arg min B3 (K)Q2(k)x(0)+hu?T (IR (k) +5%" (k- 1) 1297 ()}

u- (k)
(4.2.29)

For any qatrix T {3.12]
e {ROT (ke 1 T2 (k1) 7227 (1) }
= SR (ke 1/%) =Kk 1) [2 (ke ) =B (k1) (k= 1/%) 11T

I“[i(k+1/k)+x(k+1)[z(k+:)-H(x+:)§(k+a)ik)]}/z°'(k)} (4.2.30)
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where
Rk+1) = POLkr1/7K)HT (k1) (H e+ 1) PO (ke 170 BT (e D43 1171 (4.2.31)
RO (ke 1) R(k+1) /297 ()} = RPN TE(er1) + 20T (ke 1T (e 1) (k1)
(RO(k+1)=X{k+1)) + £rPO(ke 1/ MK (ke 1) E (k1)
(4.2.32)
L% (ke 1 PR (k1) /297 () ]

E{{R(k+1/k)+K(k+1) (2 (k1) =B (k1) R (ke 1/%) 11T

1]

(RCc+1/K)+K (ke 1) [z (ke 1) =8 (ke DR (ke 1/%)11/72°% () }

T (k1) R(k1) + 27T (ka1 PR (ke 1) B (k1) (RO (k1) = (k1))

+ £r{TK (ke 1) (H (k120 w1 7K)HT (e 1) 4T (ke 1) 1K (e 1)
w (Rl D TET e DRT (e IR e 1D Hr 1) (R(k 1) =RO (k1))
(1.2.33)
Expand (&.2.29) using (1.2.32) and (1.2.33)

u® (k) = arg min (JRT(0QO(IR )+ T () RO ()P (k) g ()P0 k)
ullk) ~

+ 32T (e 1) (sh-00-25B) 300 1) + T (ke 1) (53-5C) R (kv 1)
+ BT (k1) (SB-8C)K (ke 1) H(K# 1) (RO(kw1) =R (k1))

+ X (ken)SOR(1) + R e 1)SOK (k1) H (ke 1) (RO (ke 1) =R (k1))

j—

+ p(:-<(!<+l)-§°(k+1))1 T )Tk +1)SCK e 1§ (K1)

f

(R(er 1) -XCe+1)) + $9°(x)
+ %br{Ko(k+l)[H°(k+1)Po(kri/k)HOT(k+l)*39(k+1)}KOT(k+l)
(3%80-258) )« £r209(ka1 /10K (ke B (k1) {55-5%)
- %trK(k+1)[H(k+l)P°( 1A E (ke )43 (k1) 18T (ke 1))
(4.2.3%)
Recall that
Cler1) = A0)RUK) - (BHAN )4 +3%A% GO A ()R )+ 3(0)u®{k)

(4.2.35)
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where
Bk = BO(k) - Bl (0)al(08(x) - 52(x)a2(x)8%(k) (4.2.36)
Let
G(k) = B (K)al (k) + 82(K)a2(x) (4.2.37)
Then (4.2.35) becomes
KOk+1) = (I-6(k AR (%) = G(k)AlK) (R(K)-RO(K)) + Blk)u(k)
(1.2.38)
and i
X(k+1) = (I-G(k))A(K)RO(k) =~ (I-G(%))alk) (R(K)-RO(%)) + Blx)uO(k)
(4.2.39)
R(ker1)-R0%ke1) = A (R(K)-E2(%)) (4.2.40)
Substitue (4.2.40) in (A.2.3%) and differentiating u°*(k) is given by
WO (k) = -a®COTRIRO() = & ()n(k) (R(k) X0 (k) ] (4.2.41)
where
(k) = [(ROx)+BT(x)sA (ke 1)B(x) )
Y(k) = BCOS (x+1)[I-G(%) 14 (k)
Mk) = BTa0SsA ken)E(0aC) + BT(K) (5B (kwt) =R (ke 1)) 4 (%)

- BT () SB e 1) & (ke 1) H (ke 1) 4 (k)

The recursive equations for SA, SB, SC, 3%(k) are obtained by
substituting u® (%) back in (4.2.1%0)

SA) = @O(x) + aT() (2-6(%)) TS (k1) (T=G (%) }a (k) - Y1000 (%)Y (k)

{(1.2.42)

$Bek) = AT0O (1-6(x)) TsB (ke 1) (16 (%) ) a (k)
+ AT (-G () T(SB (w1 =% (164135 () 4 (k)
- AT (1000 TsB (a1 KL 1) 6 (ke 1) 8 () - T iaa ) Mx)

(A.2.43)
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] sC) = - P02 00M) + aT0T () SH (ke 16 (k) A (k)
+ ATOO CI-R Ok D H e 1) 1 TSC (w1 ) LTk e 1) 6 (e 1) T4 L)
}‘ + AT0O (SBlea 1R (e 1) 8 (ex 1) =53 (1) )6 (%) A (k)
; EI - AT006T (0 (5B (ke 1) -8B (ke 1)K (K 1) H (ke 1) ) A (k) &A.e.uu)
$9(%) = ¥0(k+1) + £rQ(k)PO(k)
3{ + el (ke D LRO (ke 1) 2% (ke 1/%) 89T (1e1) 432 (1) 16°T (%41)

(8* (k1) +5C (k1) =253 (% 1))]

P 2 o

+ 28rPO(%+1/K)K (ke 1) Hk+1) (5B (%+1) -5C (ke 1))

+ trK(k+1)[H(k+l)?o(k+l/k)HT(k+l)%3(k+i)]KT(k+1)SC(k+1)

ot

E (a.2.45)

; ET

1 To obtain the recursive equation for SY(k) of the i-th subsystem,
E V} substitue u°*(k), ul(x) back in (a.2.21)

1 I ST = QH) + (A0+B 00 POT N TsE (e ) (48103 (k)2 (%) ¥ (%))

£ i + @A) BO ()2 (1) ¥ () Tat () (ad (%) 4 (1) +3°(1)a% (%) ¥ (%))

, 1 iz1,2 (4.2.46)

E 1

£ T(k) = ¥ (k=) = erei ()P () « trsi(xet)tixet)

Pnaintsh Ry
s ot

. trSi(k+i)K(k+l)[ﬁ(k+1)9(k+l/k)HT(k+l)+3(k+l)}KT(k+:)
+ P (k%) -BOk/%) ] (M(%) -1 (k)) TaCT (k)

(82T () R (k) 89 (1) BT (ke 1)B)A% () (CK) - (%)) (4.2.87)
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